login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A269494 T(n,k)=Number of length-n 0..k arrays with no repeated value differing from the previous repeated value by one. 12
2, 3, 4, 4, 9, 8, 5, 16, 27, 14, 6, 25, 64, 77, 24, 7, 36, 125, 250, 215, 40, 8, 49, 216, 617, 964, 591, 66, 9, 64, 343, 1286, 3021, 3680, 1609, 108, 10, 81, 512, 2389, 7616, 14695, 13946, 4353, 176, 11, 100, 729, 4082, 16579, 44904, 71115, 52562, 11731, 286, 12, 121 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Table starts
...2.....3......4.......5........6.........7..........8..........9.........10
...4.....9.....16......25.......36........49.........64.........81........100
...8....27.....64.....125......216.......343........512........729.......1000
..14....77....250.....617.....1286......2389.......4082.......6545.......9982
..24...215....964....3021.....7616.....16579......32460......58649......99496
..40...591...3680...14695....44904....114695.....257536.....524655.....990440
..66..1609..13946...71115...263794....791381....2039274....4686391....9847970
.108..4353..52562..342749..1545030...5448185...16120298...41805237...97817054
.176.11731.197288.1646513..9026500..37435583..127240496..372491293..970685708
.286.31543.738190.7888637.52624694.256804141.1003029086.3315522725.9624545062
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1) -a(n-3)
k=2: a(n) = 6*a(n-1) -9*a(n-2) -4*a(n-3) +10*a(n-4) +4*a(n-5)
k=3: a(n) = 9*a(n-1) -24*a(n-2) +9*a(n-3) +26*a(n-4) +3*a(n-5)
k=4: a(n) = 12*a(n-1) -43*a(n-2) +24*a(n-3) +75*a(n-4) +20*a(n-5) -a(n-6)
k=5: [order 7]
k=6: [order 9]
k=7: [order 9]
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = n^2 + 2*n + 1
n=3: a(n) = n^3 + 3*n^2 + 3*n + 1
n=4: a(n) = n^4 + 4*n^3 + 6*n^2 + 2*n + 1
n=5: a(n) = n^5 + 5*n^4 + 10*n^3 + 4*n^2 + 3*n + 1
n=6: a(n) = n^6 + 6*n^5 + 15*n^4 + 8*n^3 + 5*n^2 + 6*n - 1
n=7: a(n) = n^7 + 7*n^6 + 21*n^5 + 15*n^4 + 7*n^3 + 17*n^2 - n - 1
EXAMPLE
Some solutions for n=6 k=4
..1. .0. .1. .0. .1. .4. .2. .2. .0. .0. .1. .2. .1. .0. .3. .2
..1. .4. .0. .3. .2. .2. .4. .1. .2. .2. .1. .4. .0. .1. .2. .0
..0. .4. .4. .2. .3. .1. .1. .4. .3. .2. .1. .0. .4. .3. .4. .0
..1. .2. .1. .0. .2. .3. .4. .3. .1. .2. .1. .4. .1. .4. .4. .1
..1. .0. .3. .3. .3. .4. .0. .1. .2. .4. .2. .3. .0. .2. .2. .2
..4. .2. .2. .4. .2. .0. .1. .3. .3. .1. .3. .0. .2. .0. .1. .0
CROSSREFS
Column 1 is A019274(n+2).
Row 1 is A000027(n+1).
Row 2 is A000290(n+1).
Row 3 is A000578(n+1).
Sequence in context: A244832 A250351 A269690 * A269776 A269619 A269435
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 28 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 4 19:04 EDT 2023. Contains 365888 sequences. (Running on oeis4.)