login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269496
Number of length-5 0..n arrays with no repeated value differing from the previous repeated value by one.
1
24, 215, 964, 3021, 7616, 16579, 32460, 58649, 99496, 160431, 248084, 370405, 536784, 758171, 1047196, 1418289, 1887800, 2474119, 3197796, 4081661, 5150944, 6433395, 7959404, 9762121, 11877576, 14344799, 17205940, 20506389, 24294896
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = n^5 + 5*n^4 + 10*n^3 + 4*n^2 + 3*n + 1.
Conjectures from Colin Barker, Jan 23 2019: (Start)
G.f.: x*(24 + 71*x + 34*x^2 - 18*x^3 + 10*x^4 - x^5) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6
(End)
EXAMPLE
Some solutions for n=6:
..3. .0. .3. .3. .4. .2. .3. .4. .2. .6. .5. .4. .6. .1. .5. .5
..5. .1. .3. .0. .6. .2. .3. .3. .1. .3. .4. .2. .2. .4. .1. .3
..1. .6. .3. .1. .0. .5. .2. .4. .0. .4. .1. .0. .0. .5. .5. .6
..6. .2. .4. .5. .6. .1. .4. .2. .4. .1. .0. .6. .1. .4. .3. .6
..5. .5. .1. .6. .5. .5. .6. .3. .3. .5. .2. .1. .4. .1. .4. .5
CROSSREFS
Row 5 of A269494.
Sequence in context: A105946 A050222 A169635 * A376552 A221434 A008655
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 28 2016
STATUS
approved