OFFSET
1,1
COMMENTS
The equation sigma_2(m) = sigma_2(m + k) has infinitely many solutions where k >= 2 and k is even (J.-M. De Koninck).
From Amiram Eldar, Apr 19 2024: (Start)
De Koninck's proof is based on the assumption of Schinzel's hypothesis H. If q, r = q + 2, s = q^2 + q + 1, and p = q^2 + 3*q + 3 are all primes, then p*q is a term (the values of q+1 are the terms of A268043).
The equation sigma_2(m) = sigma_2(m + 1) has only one solution: m = 6. (End)
REFERENCES
Jean-Marie De Koninck, Those Fascinating Numbers, American Mathematical Society, 2009, p. 118, entry 1079.
Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B13, pp. 103-104.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..156
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Jean-Marie De Koninck, On the solutions of sigma_2(n) = sigma_2(n + l), Ann. Univ. Sci. Budapest Sect. Comput. 21 (2002), 127-133.
Wikipedia, Schinzel's hypothesis H.
EXAMPLE
For m=24, sigma_2(24) = sigma_2(26) = 850.
MAPLE
with(numtheory):for n from 1 to 500000000 do:liste:= divisors(n) : s2 :=sum(liste[i]^2, i=1..nops(liste)):liste:=divisors(n+2):s3:=sum(liste[i]^2, i=1..nops(liste)):if s2 = s3 then print(n):else fi:od:
MATHEMATICA
Select[Range[10^9], DivisorSigma[2, #] == DivisorSigma[2, #+2]&]
PROG
(PARI) is(n) = sigma(n, 2) == sigma(n + 2, 2); \\ Amiram Eldar, Apr 19 2024
(PARI) lista(mmax) = {my(s1 = sigma(1, 2), s2 = sigma(2, 2), s3, s4); forstep(m = 3, mmax, 2, s3 = sigma(m, 2); s4 = sigma(m+1, 2); if(s1 == s3, print1(m - 2, ", ")); if(s2 == s4, print1(m - 1, ", ")); s1 = s3; s2 = s4); } \\ Amiram Eldar, Apr 19 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Apr 04 2010
EXTENSIONS
a(25)-a(27) from Donovan Johnson, Apr 14 2013
STATUS
approved