login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A169635
Integers m such that sigma_2(m) = sigma_2(m + 2) where sigma_2(m) is the sum of squares of divisors of m (A001157).
3
24, 215, 280, 1079, 947519, 1362239, 2230271, 14939999, 19720007, 32509439, 45581759, 45841247, 49436927, 78436511, 82842911, 101014631, 166828031, 225622151, 225757799, 250999559, 377129087, 554998751, 619606439, 846765431, 1204092287, 1302170687, 1710035711
OFFSET
1,1
COMMENTS
The equation sigma_2(m) = sigma_2(m + k) has infinitely many solutions where k >= 2 and k is even (J.-M. De Koninck).
From Amiram Eldar, Apr 19 2024: (Start)
De Koninck's proof is based on the assumption of Schinzel's hypothesis H. If q, r = q + 2, s = q^2 + q + 1, and p = q^2 + 3*q + 3 are all primes, then p*q is a term (the values of q+1 are the terms of A268043).
The equation sigma_2(m) = sigma_2(m + 1) has only one solution: m = 6. (End)
REFERENCES
Jean-Marie De Koninck, Those Fascinating Numbers, American Mathematical Society, 2009, p. 118, entry 1079.
Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B13, pp. 103-104.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Jean-Marie De Koninck, On the solutions of sigma_2(n) = sigma_2(n + l), Ann. Univ. Sci. Budapest Sect. Comput. 21 (2002), 127-133.
EXAMPLE
For m=24, sigma_2(24) = sigma_2(26) = 850.
MAPLE
with(numtheory):for n from 1 to 500000000 do:liste:= divisors(n) : s2 :=sum(liste[i]^2, i=1..nops(liste)):liste:=divisors(n+2):s3:=sum(liste[i]^2, i=1..nops(liste)):if s2 = s3 then print(n):else fi:od:
MATHEMATICA
Select[Range[10^9], DivisorSigma[2, #] == DivisorSigma[2, #+2]&]
PROG
(PARI) is(n) = sigma(n, 2) == sigma(n + 2, 2); \\ Amiram Eldar, Apr 19 2024
(PARI) lista(mmax) = {my(s1 = sigma(1, 2), s2 = sigma(2, 2), s3, s4); forstep(m = 3, mmax, 2, s3 = sigma(m, 2); s4 = sigma(m+1, 2); if(s1 == s3, print1(m - 2, ", ")); if(s2 == s4, print1(m - 1, ", ")); s1 = s3; s2 = s4); } \\ Amiram Eldar, Apr 19 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Apr 04 2010
EXTENSIONS
a(25)-a(27) from Donovan Johnson, Apr 14 2013
STATUS
approved