login
A169638
Number of multiset permutations of the n initial elements of A005229 with additional element A005229(0)=1.
2
1, 1, 1, 4, 20, 60, 420, 3360, 30240, 151200, 1663200, 9979200, 129729600, 1816214400, 27243216000, 217945728000, 3705077376000, 66691392768000, 633568231296000, 12671364625920000, 266098657144320000, 5854170457175040000, 134645920515025920000, 1615751046180311040000
OFFSET
0,4
LINKS
FORMULA
a(n) = number of permutations of the list b[0..n] where b(0)=0 and b(n) = A005229(n) for n>=1.
MAPLE
N:= 100: # to get a(0) to a(N)
A005229:= proc(n) option remember;
procname(procname(n-2))+procname(n-procname(n-2))
end proc:
A005229(1):= 1: A005229(2):= 1:
V:= Vector(N):
A[0]:= 1: V[1]:= 1:
for n from 1 to N do
r:= A005229(n);
V[r]:= V[r]+1;
A[n]:= A[n-1]*(n+1)/V[r];
od:
seq(A[i], i=0..N); # Robert Israel, Dec 23 2014
MATHEMATICA
Mallows[n_Integer?Positive] := Mallows[n] = Mallows[Mallows[n - 2]] + Mallows[ n - Mallows[n - 2]];
Mallows[0] = Mallows[1] = Mallows[2] = 1;
a[m_] := Length[Permutations[Table[Mallows[i], {i, 0, m}]]];
Table[a[m], {m, 0, 10}]
(* A much better way to compute the terms is to use the multinomials of the multiplicities of the terms of A005229! - Joerg Arndt, Dec 23 2014 *)
CROSSREFS
Cf. A169637.
Sequence in context: A355990 A169637 A356012 * A226424 A225260 A131479
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Apr 04 2010
EXTENSIONS
Edited and new name, Joerg Arndt, Dec 23 2014
a(11) to a(23) from Robert Israel, Dec 23 2014
STATUS
approved