login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131479
a(n) = floor(n^4/4).
3
0, 0, 4, 20, 64, 156, 324, 600, 1024, 1640, 2500, 3660, 5184, 7140, 9604, 12656, 16384, 20880, 26244, 32580, 40000, 48620, 58564, 69960, 82944, 97656, 114244, 132860, 153664, 176820, 202500, 230880, 262144, 296480, 334084, 375156
OFFSET
0,3
FORMULA
From R. J. Mathar, Dec 19 2008: (Start)
G.f.: 4*x^2*(1+x+x^2)/((1+x)*(1-x)^5).
a(n) = 4*A011863(n-1). (End)
a(n) = floor(n^2/2)*ceiling(n^2/2) = A007590(n) * A000982(n). - Enrique Pérez Herrero, May 31 2015
Sum_{n>=2} 1/a(n) = Sum_{n>=1} 1/(4n^4) + Sum_{n>=1} 1/(2n*(n+1)*(2n^2+2n+1)) = Zeta(4)/4 + (3-Pi*tanh(Pi/2))/2. - Enrique Pérez Herrero, May 31 2015
a(2*k) = 4*k^4; a(2*k+1) = 2*(k^3*(k+1) + k*(k+1)^3). - Robert Israel, Jun 01 2015
E.g.f.: (x*(x^3 + 6*x^2 + 7*x + 1)*cosh(x) + (x^4 + 6*x^3 + 7*x^2 + x - 1)*sinh(x))/4. - Stefano Spezia, Feb 18 2023
MAPLE
seq(op([4*k^4, 2*(k^3*(k+1)+k*(k+1)^3)]), k=0..100); # Robert Israel, Jun 01 2015
MATHEMATICA
Table[Floor[n^4/4], {n, 0, 20}] (* Enrique Pérez Herrero, May 31 2015 *)
PROG
(Magma) [Floor(n^4/4): n in [0..60]]; // Vincenzo Librandi, Jun 16 2011
(PARI) vector(50, n, n--; n^4\4) \\ Michel Marcus, Jun 02 2015
(Python)
def A131479(n): return n**4>>2 # Chai Wah Wu, Jan 31 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Mohammad K. Azarian, Jul 27 2007
STATUS
approved