|
|
A131479
|
|
a(n) = floor(n^4/4).
|
|
3
|
|
|
0, 0, 4, 20, 64, 156, 324, 600, 1024, 1640, 2500, 3660, 5184, 7140, 9604, 12656, 16384, 20880, 26244, 32580, 40000, 48620, 58564, 69960, 82944, 97656, 114244, 132860, 153664, 176820, 202500, 230880, 262144, 296480, 334084, 375156
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
|
|
FORMULA
|
From R. J. Mathar, Dec 19 2008: (Start)
G.f.: 4*x^2*(1+x+x^2)/((1+x)*(1-x)^5).
a(n) = 4*A011863(n-1). (End)
a(n) = floor(n^2/2)*ceiling(n^2/2) = A007590(n) * A000982(n). - Enrique Pérez Herrero, May 31 2015
Sum_{n>=2} 1/a(n) = Sum_{n>=1} 1/(4n^4) + Sum_{n>=1} 1/(2n*(n+1)*(2n^2+2n+1)) = Zeta(4)/4 + (3-Pi*tanh(Pi/2))/2. - Enrique Pérez Herrero, May 31 2015
a(2*k) = 4*k^4; a(2*k+1) = 2*(k^3*(k+1) + k*(k+1)^3). - Robert Israel, Jun 01 2015
|
|
MAPLE
|
seq(op([4*k^4, 2*(k^3*(k+1)+k*(k+1)^3)]), k=0..100); # Robert Israel, Jun 01 2015
|
|
MATHEMATICA
|
Table[Floor[n^4/4], {n, 0, 20}] (* Enrique Pérez Herrero, May 31 2015 *)
|
|
PROG
|
(MAGMA) [Floor(n^4/4): n in [0..60]]; // Vincenzo Librandi, Jun 16 2011
(PARI) vector(50, n, n--; n^4\4) \\ Michel Marcus, Jun 02 2015
|
|
CROSSREFS
|
Cf. A000982, A008619, A004526, A007590, A036487.
Cf. A131478.
Sequence in context: A169638 A226424 A225260 * A194094 A055538 A302317
Adjacent sequences: A131476 A131477 A131478 * A131480 A131481 A131482
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Mohammad K. Azarian, Jul 27 2007
|
|
STATUS
|
approved
|
|
|
|