login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131478
a(n) = ceiling(n^4/4).
2
0, 1, 4, 21, 64, 157, 324, 601, 1024, 1641, 2500, 3661, 5184, 7141, 9604, 12657, 16384, 20881, 26244, 32581, 40000, 48621, 58564, 69961, 82944, 97657, 114244, 132861, 153664, 176821, 202500, 230881, 262144, 296481, 334084, 375157, 419904, 468541, 521284
OFFSET
0,3
FORMULA
From R. J. Mathar, Dec 19 2008: (Start)
G.f.: x*(1 + 10*x^2 + x^4)/((1 - x)^5*(1 + x)).
a(n) + a(n+1) = A058919(n+1). (End)
a(n) = floor(n^4/4 + 3/4). - Bruno Berselli, Dec 21 2017
E.g.f.: (x*(x^3 + 6*x^2 + 7*x + 1)*cosh(x) + (x^4 + 6*x^3 + 7*x^2 + x + 3)*sinh(x))/4. - Stefano Spezia, Feb 18 2023
MATHEMATICA
Ceiling[Range[0, 40]^4/4] (* Harvey P. Dale, May 17 2019 *)
CoefficientList[Series[(x(x^3 + 6x^2 + 7x + 1)Cosh[x]+ (x^4 + 6x^3 + 7x^2 + x + 3)Sinh[x])/4, {x, 0, 35}], x]Table[n!, {n, 0, 35}] (* Stefano Spezia, Feb 19 2023 *)
PROG
(Magma) [Ceiling(n^4/4) : n in [0..50]]; // Vincenzo Librandi, Oct 01 2011
(PARI) vector(50, n, n--; ceil(n^4/4)) \\ Michel Marcus, Jun 16 2015
(Python)
def A131478(n): return n**4+3>>2 # Chai Wah Wu, Jan 30 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Mohammad K. Azarian, Jul 27 2007
STATUS
approved