|
|
A058919
|
|
a(n) = n^4/2 - n^3 + 3n^2/2 - n + 1.
|
|
3
|
|
|
1, 1, 5, 25, 85, 221, 481, 925, 1625, 2665, 4141, 6161, 8845, 12325, 16745, 22261, 29041, 37265, 47125, 58825, 72581, 88621, 107185, 128525, 152905, 180601, 211901, 247105, 286525, 330485, 379321, 433381, 493025, 558625, 630565, 709241
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
On an n X (n - 1)(n - 2)/2 X n(n - 1)/2 cuboid with n >= 5, the two points at greatest surface distance from a corner are the opposite corner and the point 1 in from each of the two edges on a smallest face which meet at the opposite corner; this greatest surface distance is sqrt(a(n)).
|
|
LINKS
|
|
|
FORMULA
|
G.f.: (1 - 4*x + 10*x^2 + 5*x^4)/(1 - x)^5. - Colin Barker, Jan 01 2012
E.g.f.: exp(x)*(2 + 4*x^2 + 4*x^3 + x^4)/2. - Stefano Spezia, Oct 08 2022
|
|
MAPLE
|
|
|
MATHEMATICA
|
Table[n^4/2 - n^3 + 3 n^2/2 - n + 1, {n, 0, 30}] (* Wesley Ivan Hurt, May 10 2014 *)
|
|
PROG
|
(PARI) { for (n = 0, 500, write("b058919.txt", n, " ", (n^4 + 3*n^2)/2 - n^3 - n + 1); ) } \\ Harry J. Smith, Jun 23 2009
(Magma) [n^4/2 - n^3 + 3*n^2/2 - n + 1: n in [0..30]]; // Wesley Ivan Hurt, May 10 2014
|
|
CROSSREFS
|
For n >= 4 the sequence is a subsequence of A007692.
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|