login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A080827 Rounded up staircase on natural numbers. 13
1, 3, 5, 9, 13, 19, 25, 33, 41, 51, 61, 73, 85, 99, 113, 129, 145, 163, 181, 201, 221, 243, 265, 289, 313, 339, 365, 393, 421, 451, 481, 513, 545, 579, 613, 649, 685, 723, 761, 801, 841, 883, 925, 969, 1013, 1059, 1105, 1153, 1201, 1251, 1301, 1353, 1405, 1459 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Represents the 'rounded up' staircase diagonal on A000027, arranged as a square array. A000982 is the 'rounded down' staircase.

a(1)= 1, a(2n) = a(2n-1) + 2n, a(2n+1) = a(2n) +2n. - Amarnath Murthy, May 07 2003

Partial sums of A131055. - Paul Barry, Jun 14 2008

The same sequence arises in the triangular array of integers >= 1 according to a simple "zig zag" rule for selection of terms. a(n-1) lies in the (n-1)-th row of the array and the second row of that subarray (with apex a(n-1)) contains just two numbers, one odd one even. The one with the same (odd) parity as a(n-1) is a(n). - David James Sycamore, Jul 29 2018

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

J. C. F. de Winter, Using the Student's t-test with extremely small sample sizes, Practical Assessment, Research & Evaluation, 18(10), 2013.

David James Sycamore, Triangular array.

Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).

FORMULA

a(n) = ceiling((n^2+1)/2).

G.f.: x*(1+x-x^2+x^3)/((1+x)(1-x)^3); a(n) = n*(n+1)/2-floor((n-1)/2). - Paul Barry, Apr 12 2008 [corrected by R. J. Mathar, Jul 14 2013]

From Wesley Ivan Hurt, Sep 08 2015: (Start)

a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4), n > 4.

a(n) = (n^2 + 2 - (1 - (-1)^n)/2)/2.

a(n) = floor(n^2/2) + 1 = A007590(n-1) + 1. (End)

Sum_{n>=1} 1/a(n) = tanh(Pi/2)*Pi/2 + coth(Pi/sqrt(2))*Pi/(2*sqrt(2)) - 1/2. - Amiram Eldar, Sep 15 2022

MAPLE

A080827:=n->(n^2+2-(1-(-1)^n)/2)/2: seq(A080827(n), n=1..100); # Wesley Ivan Hurt, Sep 08 2015

MATHEMATICA

s1=0; lst={}; Do[s1+=n; If[EvenQ[s1], s1-=1]; AppendTo[lst, s1], {n, 6!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jun 06 2009 *)

CoefficientList[Series[(1 + x - x^2 + x^3) / ((1 + x) (1 - x)^3), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 05 2013 *)

PROG

(Magma) [n*(n+1)/2-Floor((n-1)/2) : n in [1..60]]; // Vincenzo Librandi, Aug 05 2013

(GAP) List([1..10], n->Int(n^2/2)+1); # Muniru A Asiru, Aug 02 2018

CROSSREFS

Apart from leading term identical to A099392.

Cf. A000027, A000982, A007590, A131055.

Sequence in context: A118028 A209974 A099392 * A200919 A213207 A102378

Adjacent sequences: A080824 A080825 A080826 * A080828 A080829 A080830

KEYWORD

nonn,easy

AUTHOR

Paul Barry, Feb 28 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 29 16:13 EDT 2023. Contains 361599 sequences. (Running on oeis4.)