login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102378
a(n) = a(n-1) + a([n/2]) + 1, a(1) = 1.
10
1, 3, 5, 9, 13, 19, 25, 35, 45, 59, 73, 93, 113, 139, 165, 201, 237, 283, 329, 389, 449, 523, 597, 691, 785, 899, 1013, 1153, 1293, 1459, 1625, 1827, 2029, 2267, 2505, 2789, 3073, 3403, 3733, 4123, 4513, 4963, 5413, 5937, 6461, 7059, 7657, 8349
OFFSET
1,2
COMMENTS
From Gus Wiseman, Mar 23 2019: (Start)
The offset could safely be changed to zero by setting the boundary condition to a(0) = 0.
Also the number of integer partitions of 2n into powers of 2 with at least one part > 1. The Heinz numbers of these partitions are given by A324927. For example, the a(1) = 1 through a(5) = 13 integer partitions are:
(2) (4) (42) (8) (82)
(22) (222) (44) (442)
(211) (411) (422) (811)
(2211) (2222) (4222)
(21111) (4211) (4411)
(22211) (22222)
(41111) (42211)
(221111) (222211)
(2111111) (421111)
(2221111)
(4111111)
(22111111)
(211111111)
(End)
FORMULA
a(n) - a(n-1) = A018819(n+1)
G.f. A(x) satisfies (1-x)*A(x) = 2(1 + x)*B(x^2), where B(x) is the gf of A033485
a(n) = A000123(n) - 1. - Gus Wiseman, Mar 23 2019
G.f. A(x) satisfies: A(x) = (x + (1 - x^2) * A(x^2)) / (1 - x)^2. - Ilya Gutkovskiy, Aug 11 2021
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], And[Max@@#>1, And@@IntegerQ/@Log[2, #]]&]], {n, 0, 30, 2}] (* Gus Wiseman, Mar 23 2019 *)
PROG
(Python)
from itertools import islice
from collections import deque
def A102378_gen(): # generator of terms
aqueue, f, b, a = deque([2]), True, 1, 2
yield from (1, 3)
while True:
a += b
yield 2*a - 1
aqueue.append(a)
if f: b = aqueue.popleft()
f = not f
A102378_list = list(islice(A102378_gen(), 40)) # Chai Wah Wu, Jun 08 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Mitch Harris, Jan 05 2005
STATUS
approved