OFFSET
1,3
COMMENTS
Conjecture: Let b(n) be the number of fixed points of the set of binary partitions of n under Glaisher's function that proves Euler's odd-distinct theorem. Then b(1) = 1 and for n > 1, b(2*n) = b(2*n+1) = 2*a(n). - George Beck, Jul 23 2022
REFERENCES
de Bruijn, N. G., On Mahler's partition problem. Nederl. Akad. Wetensch., Proc. 51, (1948) 659-669 = Indagationes Math. 10, 210-220 (1948).
Gonnet, Gaston H.; Olivie, Henk J.; and Wood, Derick, Height-ratio-balanced trees. Comput. J. 26 1983), no. 2, 106-108.
Mahler, Kurt On a special functional equation. J. London Math. Soc. 15, (1940). 115-123.
Nievergelt, J.; Reingold, E. M., Binary search trees of bounded balance, SIAM J. Comput. 2 (1973), 33-43.
FORMULA
PROG
(Python)
from functools import cache
@cache
def a(n: int) -> int:
return a(n - 1) + a(n // 2) + 1 if n > 1 else 0
print([a(n) for n in range(1, 51)]) # Peter Luschny, Jul 24 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Mitch Harris, Jan 05 2005
STATUS
approved