login
A102379
a(n) is the minimal number of nodes in a binary tree of height n.
2
0, 1, 2, 4, 6, 9, 12, 17, 22, 29, 36, 46, 56, 69, 82, 100, 118, 141, 164, 194, 224, 261, 298, 345, 392, 449, 506, 576, 646, 729, 812, 913, 1014, 1133, 1252, 1394, 1536, 1701, 1866, 2061, 2256, 2481, 2706, 2968, 3230, 3529, 3828, 4174, 4520, 4913
OFFSET
1,3
COMMENTS
Conjecture: Let b(n) be the number of fixed points of the set of binary partitions of n under Glaisher's function that proves Euler's odd-distinct theorem. Then b(1) = 1 and for n > 1, b(2*n) = b(2*n+1) = 2*a(n). - George Beck, Jul 23 2022
REFERENCES
de Bruijn, N. G., On Mahler's partition problem. Nederl. Akad. Wetensch., Proc. 51, (1948) 659-669 = Indagationes Math. 10, 210-220 (1948).
Gonnet, Gaston H.; Olivie, Henk J.; and Wood, Derick, Height-ratio-balanced trees. Comput. J. 26 1983), no. 2, 106-108.
Mahler, Kurt On a special functional equation. J. London Math. Soc. 15, (1940). 115-123.
Nievergelt, J.; Reingold, E. M., Binary search trees of bounded balance, SIAM J. Comput. 2 (1973), 33-43.
FORMULA
a(n) = a(n-1) + a(floor(n/2)) + 1, a(1) = 0.
a(n) - a(n-1) = A018819(n+1).
G.f. A(x) satisfies (1-x)*A(x) = 2*(1 + x)*B(x^2), where B(x) is the g.f. of A033485.
PROG
(Python)
from functools import cache
@cache
def a(n: int) -> int:
return a(n - 1) + a(n // 2) + 1 if n > 1 else 0
print([a(n) for n in range(1, 51)]) # Peter Luschny, Jul 24 2022
CROSSREFS
Essentially partial sums of A040039.
Sequence in context: A064985 A090631 A001365 * A238374 A133041 A079492
KEYWORD
nonn
AUTHOR
Mitch Harris, Jan 05 2005
STATUS
approved