This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A181477 a(n) has generating function 1/((1-x)^k*(1-x^2)^(k*(k-1)/2)) for k=5. 5
 1, 5, 25, 85, 275, 751, 1955, 4615, 10460, 22220, 45628, 89420, 170340, 313140, 562020, 980628, 1676370, 2800410, 4596290, 7399930, 11732006, 18297950, 28155910, 42716750, 64037980, 94823756, 138922300, 201325900, 288988100 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n,k) is conjectured to also be the count of monomials (or terms) in the Schur polynomials of k variables and degree n, summed over all partitions of n in at most k parts (zero-padded to length k). LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 Wikipedia, Schur Polynomial EXAMPLE a(n)=85 since the Schur polynomial of 5 variables and degree 4 starts of as x[1]*x[2]*x[3]*x[4] + x[1]*x[2]*x[3]*x[5] + ... + x[4]*x[5]^3 + x[5]^4. The exponents collect to the padded partitions of 4 as 5*p(1) + 40*p(2) + 30*p(3) + 150*p(4) + 50*p(5) where p(1) is the lexicographically first padded partition of 4: {4,0,0,0}, a coded form of monomials x[i]^4, and p(5) stands for {1,1,1,1}, coding x[i]x[j]x[k]x[l] with all indices different. MATHEMATICA Tr[toz/@(Function[q, PadRight[q, k]]/@ (TransposePartition/@ Partitions[n, k]))/. w[arg__] -> 1 ]; with toz[p_]:=Block[{a, q, e, w}, u1=Expand[q Together[Expand[schur[p]]] +q a]/. Plus-> List ; u2=u1/. Times->w /. q->Sequence[]/. w[i_Integer, r__]-> i w[r] /. x[_]^(e_:1) ->e ; u3=Plus@@ u2/. w[arg__]:> Reverse@ Sort@ w[arg] /. w[a]->0 ]; and schur[p_]:=Block[{le=Length[p], n=Tr[p]}, Together[Expand[Factor[Det[Outer[ #2^#1&, p+le-Range[le] , Array[x, le]]]]/Factor[Det[Outer[ #2^#1&, Range[le-1, 0, -1] , Array[x, le]]]] ]] ] CROSSREFS For k=2 (two variables): A002620, k=3: A038163, k=4: A054498 k=6: A181478, k=7: A181479, k=8: A181480. Column k=5 of A210391. - Alois P. Heinz, Mar 22 2012 Sequence in context: A051229 A058919 A018212 * A147274 A147034 A146460 Adjacent sequences:  A181474 A181475 A181476 * A181478 A181479 A181480 KEYWORD nonn,easy AUTHOR Wouter Meeussen, Oct 24 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 16:15 EDT 2018. Contains 316529 sequences. (Running on oeis4.)