OFFSET
0,2
COMMENTS
Number of symmetric nonnegative integer 6 X 6 matrices with sum of elements equal to 4*n, under action of dihedral group D_4. - Vladeta Jovovic, May 14 2000
Equals the triangular sequence convolved with the aerated triangular sequence, [1, 0, 3, 0, 6, 0, 10, ...]. - Gary W. Adamson, Jun 11 2009
Number of partitions of n (n>=1) into 1s and 2s if there are three kinds of 1s and three kinds of 2s. Example: a(2)=9 because we have 11, 11', 11", 1'1', 1'1", 1"1", 2, 2', and 2". - Emeric Deutsch, Jun 26 2009
Equals the tetrahedral numbers with repeats convolved with the natural numbers: (1 + x + 4x^2 + 4x^3 + ...) * (1 + 2x + 3x^2 + 4x^3 + ...) = (1 + 3x + 9x^2 + 19x^3 + ...). - Gary W. Adamson, Dec 22 2010
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (3,0,-8,6,6,-8,0,3,-1).
FORMULA
a(2*k) = (4*k + 5)*binomial(k + 4, 4)/5 = A034263(k); a(2*k + 1) = binomial(k + 4, 4)*(15 + 4*k)/5 = A059599(k), k >= 0.
a(n) = (1/3840)*(4*n^5 + 90*n^4 + 760*n^3 + 2970*n^2 + 5266*n + 3285 + (-1)^n*(30*n^2 + 270*n + 555)). Recurrence: a(n) = 3*a(n-1) - 8*a(n-3) + 6*a(n-4) + 6*a(n-5) - 8*a(n-6) + 3*a(n-8) - a(n-9). - Vladeta Jovovic, Apr 24 2002
a(n+1) - a(n) = A096338(n+2). - R. J. Mathar, Nov 04 2008
MAPLE
G := 1/((1-x)^3*(1-x^2)^3): Gser := series(G, x = 0, 42): seq(coeff(Gser, x, n), n = 0 .. 37); # Emeric Deutsch, Jun 26 2009
# alternative
A038163 := proc(n)
(4*n^5+90*n^4+760*n^3+2970*n^2+5266*n+3285+(-1)^n*(30*n^2+270*n+555))/3840 ;
end proc:
seq(A038163(n), n=0..30) ; # R. J. Mathar, Feb 22 2021
MATHEMATICA
CoefficientList[Series[1/((1-x)*(1-x^2))^3, {x, 0, 40}], x] (* Jean-François Alcover, Mar 11 2014 *)
LinearRecurrence[{3, 0, -8, 6, 6, -8, 0, 3, -1}, {1, 3, 9, 19, 39, 69, 119, 189, 294}, 50] (* Harvey P. Dale, Nov 24 2022 *)
PROG
(Haskell)
import Data.List (inits, intersperse)
a038163 n = a038163_list !! n
a038163_list = map
(sum . zipWith (*) (intersperse 0 $ tail a000217_list) . reverse) $
tail $ inits $ tail a000217_list where
-- Reinhard Zumkeller, Feb 27 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved