login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A038166
G.f.: 1/((1-x)*(1-x^2))^6.
4
1, 6, 27, 92, 273, 714, 1715, 3816, 8007, 15938, 30381, 55692, 98735, 169806, 284349, 464672, 742950, 1164228, 1791426, 2710344, 4037670, 5928988, 8591154, 12294672, 17392258, 24337404, 33711510, 46251016, 62886162, 84779748
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (6, -9, -16, 60, -24, -116, 144, 66, -220, 66, 144, -116, -24, 60, -16, -9, 6, -1).
FORMULA
a(2*k) = binomial(k + 8, 8)*(2*k + 9)*(8*k^2 + 72*k + 55)/(11*5*9) = A059603(k); a(2*k + 1) = 2*binomial(k + 9, 9)*(8*k^2 + 80*k + 165)/(11*5) = 2*A059624(k), k >= 0; Wolfdieter Lang, Feb 02 2000
a(0)=1, a(1)=6, a(2)=27, a(3)=92, a(4)=273, a(5)=714, a(6)=1715, a(7)=3816, a(8)=8007, a(9)=15938, a(10)=30381, a(11)=55692, a(12)=98735, a(13)=169806, a(14)=284349, a(15)=464672, a(16)=742950, a(17)=1164228, a(n)=6*a(n-1)-9*a(n-2)-16*a(n-3)+60*a(n-4)-24*a(n-5)-116*a(n-6)+144*a(n-7)+ 66*a(n-8)- 220*a(n-9)+66*a(n-10)+144*a(n-11)-116*a(n-12)-24*a(n-13)+60*a(n-14)-16*a(n-15)- 9*a(n-16)+ 6*a(n-17)-a(n-18). - Harvey P. Dale, Jun 10 2013
MAPLE
A038166 := proc(n)
add( A038163(n-i)*A038163(i), i=0..n) ;
end proc:
seq(A038166(n), n=0..30) ; # R. J. Mathar, Feb 22 2021
MATHEMATICA
CoefficientList[Series[1/((1-x)(1-x^2))^6, {x, 0, 40}], x] (* or *) LinearRecurrence[ {6, -9, -16, 60, -24, -116, 144, 66, -220, 66, 144, -116, -24, 60, -16, -9, 6, -1}, {1, 6, 27, 92, 273, 714, 1715, 3816, 8007, 15938, 30381, 55692, 98735, 169806, 284349, 464672, 742950, 1164228}, 40] (* Harvey P. Dale, Jun 10 2013 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved