The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A038164 Expansion of 1/((1-x)*(1-x^2))^4. 3
1, 4, 14, 36, 85, 176, 344, 624, 1086, 1800, 2892, 4488, 6798, 10032, 14520, 20592, 28743, 39468, 53482, 71500, 94523, 123552, 159952, 205088, 260780, 328848, 411672, 511632, 631788, 775200, 945744, 1147296, 1384701, 1662804 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
From Gary W. Adamson, Mar 02 2010: (Start)
Given the tetrahedral numbers, A000292, shift the offset to 0; then
(1 + 4x + 10x^2 + 20x^3 + ...)*(1 + 4x^2 + 10x^4 + 20x^6 + ...) =
(1 + 4x^2 + 14x^3 + 36x^4 + ...) (End)
LINKS
Index entries for linear recurrences with constant coefficients, signature (4,-2,-12,17,8,-28,8,17,-12,-2,4,-1).
FORMULA
a(2*k) = (4*k^2 + 24*k + 21)*binomial(k + 5, 5)/21 = A059600(k); a(2*k + 1) = 4*binomial(k + 6, 6)*(7 + 2*k)/7 = 4*A050486(k), k >= 0.
a(0)=1, a(1)=4, a(2)=14, a(3)=36, a(4)=85, a(5)=176, a(6)=344, a(7)=624, a(8)=1086, a(9)=1800, a(10)=2892, a(11)=4488, a(n)=4*a(n-1)-2*a(n-2)- 12*a(n-3)+17*a(n-4)+8*a(n-5)-28*a(n-6)+8*a(n-7)+17*a(n-8)-12*a(n-9)- 2*a(n-10)+4*a(n-11)-a(n-12). - Harvey P. Dale, Jul 02 2011
MATHEMATICA
CoefficientList[Series[1/((1-x)(1-x^2))^4, {x, 0, 40}], x] (* or *) LinearRecurrence[ {4, -2, -12, 17, 8, -28, 8, 17, -12, -2, 4, -1}, {1, 4, 14, 36, 85, 176, 344, 624, 1086, 1800, 2892, 4488}, 40] (* Harvey P. Dale, Jul 02 2011 *)
PROG
(PARI) Vec(1/((1-x)*(1-x^2))^4 + O(x^40)) \\ Michel Marcus, Jan 13 2024
CROSSREFS
Cf. A000292. - Gary W. Adamson, Mar 02 2010
Sequence in context: A213045 A061989 A079908 * A327382 A193522 A187091
KEYWORD
nonn
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 15 10:19 EDT 2024. Contains 373407 sequences. (Running on oeis4.)