login
A052267
Number of 2 X n matrices over GF(3) under row and column permutations.
3
1, 6, 27, 92, 267, 678, 1561, 3312, 6582, 12372, 22194, 38232, 63594, 102564, 160974, 246576, 369567, 543114, 784069, 1113684, 1558557, 2151578, 2933151, 3952416, 5268796, 6953544, 9091668, 11783856, 15148836, 19325736, 24476940, 30790944, 38485773, 47812398
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (6,-12,2,27,-36,0,36,-27,-2,12,-6,1).
FORMULA
G.f.: (3*x^2+1) /((1-x^2)^3*(1-x)^6).
a(n) = ((315*(475+37*(-1)^n) + 6*(54959+945*(-1)^n)*n + (298618+630*(-1)^n)*n^2 + 150528*n^3 + 46788*n^4 + 9156*n^5 + 1092*n^6 + 72*n^7 + 2*n^8)) / 161280. - Colin Barker, Jan 16 2017
PROG
(PARI) Vec((3*x^2+1) / ((1-x^2)^3*(1-x)^6) + O(x^40)) \\ Colin Barker, Jan 16 2017
CROSSREFS
Sequence in context: A125196 A377269 A100189 * A038166 A327384 A121596
KEYWORD
nonn,easy
AUTHOR
Vladeta Jovovic, Feb 04 2000
STATUS
approved