login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327381
Number of colored integer partitions of n such that three colors are used and parts differ by size or by color.
6
1, 3, 9, 19, 39, 72, 128, 216, 354, 563, 876, 1335, 1998, 2946, 4284, 6154, 8742, 12294, 17129, 23667, 32442, 44151, 59682, 80169, 107054, 142167, 187812, 246895, 323058, 420852, 545958, 705438, 908043, 1164609, 1488504, 1896174, 2407836, 3048255, 3847716
OFFSET
3,2
COMMENTS
With offset 0 convolution cube of A000009(k+1). - George Beck, Jan 29 2021
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 3..10000 (terms 3..5000 from Alois P. Heinz)
FORMULA
a(n) ~ exp(Pi*sqrt(n)) / (8 * n^(3/4)). - Vaclav Kotesovec, Sep 14 2019
G.f.: (-1 + Product_{m >= 1} (1 + x^m))^3. - George Beck, Jan 29 2021
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add((t->
b(t, min(t, i-1), k)*binomial(k, j))(n-i*j), j=0..min(k, n/i))))
end:
a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k))(3):
seq(a(n), n=3..45);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i<1, 0, Sum[With[{t = n - i j}, b[t, Min[t, i - 1], k] Binomial[k, j]], {j, 0, Min[k, n/i]}]]];
a[n_] := With[{k = 3}, Sum[b[n, n, k-i] (-1)^i Binomial[k, i], {i, 0, k}]];
a /@ Range[3, 45] (* Jean-François Alcover, Dec 15 2020, after Alois P. Heinz *)
CROSSREFS
Column k=3 of A308680.
Cf. A000009.
Sequence in context: A080010 A135117 A038163 * A146819 A147213 A146441
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 03 2019
STATUS
approved