login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327383
Number of colored integer partitions of n such that five colors are used and parts differ by size or by color.
6
1, 5, 20, 60, 160, 381, 845, 1760, 3495, 6660, 12267, 21935, 38230, 65140, 108785, 178437, 287975, 457965, 718575, 1113680, 1706533, 2587655, 3885615, 5781830, 8530625, 12486429, 18140360, 26169335, 37501595, 53403915, 75597130, 106408670, 148973260, 207496090
OFFSET
5,2
COMMENTS
With offset 0 five-fold convolution of A000009(k+1). - George Beck, Jan 29 2021
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 5..10000 (terms 5..5000 from Alois P. Heinz)
FORMULA
a(n) ~ exp(Pi*sqrt(5*n/3)) * 5^(1/4) / (16 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 16 2019
G.f.: (-1 + Product_{m >= 1} (1 + x^m))^5. - George Beck, Jan 29 2021
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add((t->
b(t, min(t, i-1), k)*binomial(k, j))(n-i*j), j=0..min(k, n/i))))
end:
a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k))(5):
seq(a(n), n=5..45);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[With[{t = n - i j}, b[t, Min[t, i - 1], k] Binomial[k, j]], {j, 0, Min[k, n/i]}]]];
a[n_] := With[{k = 5}, Sum[b[n, n, k-i] (-1)^i Binomial[k, i], {i, 0, k}]];
a /@ Range[5, 45] (* Jean-François Alcover, Dec 15 2020, after Alois P. Heinz *)
CROSSREFS
Column k=5 of A308680.
Cf. A000009.
Sequence in context: A319888 A319869 A038165 * A339588 A344099 A215224
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 03 2019
STATUS
approved