login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327386
Number of colored integer partitions of n such that eight colors are used and parts differ by size or by color.
6
1, 8, 44, 184, 654, 2048, 5836, 15400, 38173, 89752, 201740, 436104, 911072, 1846648, 3643360, 7016016, 13217634, 24408992, 44260816, 78923480, 138571450, 239838288, 409619196, 690956800, 1152075322, 1900139104, 3102050748, 5015671600, 8036376650, 12766039888
OFFSET
8,2
FORMULA
a(n) ~ exp(2*Pi*sqrt(2*n/3)) / (2^(19/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 16 2019
G.f.: (-1 + Product_{k>=1} (1 + x^k))^8. - Ilya Gutkovskiy, Jan 31 2021
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add((t->
b(t, min(t, i-1), k)*binomial(k, j))(n-i*j), j=0..min(k, n/i))))
end:
a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k))(8):
seq(a(n), n=8..45);
MATHEMATICA
A327386[n_] := SeriesCoefficient[(Product[(1 + x^k), {k, 1, n}] - 1)^8, {x, 0, n}]; Table[A327386[n], {n, 8, 37}] (* Robert P. P. McKone, Jan 31 2021 *)
CROSSREFS
Column k=8 of A308680.
Sequence in context: A165618 A250285 A059596 * A341386 A181358 A005798
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 03 2019
STATUS
approved