login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A250285
Number of permutations p of [n] such that p(i) > p(i+1) iff i == 0 (mod 8).
3
1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 44, 164, 494, 1286, 3002, 6434, 12869, 194464, 1925200, 12394480, 62224336, 261667792, 959874928, 3154435120, 9464040829, 210311057024, 3007458113984, 27514536974144, 193384741516784, 1123028832217904, 5617639404687824
OFFSET
0,10
LINKS
MAPLE
b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
`if`(t=0, add(b(u-j, o+j-1, irem(t+1, 8)), j=1..u),
add(b(u+j-1, o-j, irem(t+1, 8)), j=1..o)))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..35);
MATHEMATICA
nmax = 30; CoefficientList[Series[1 + Sum[(x^(8 - k) * HypergeometricPFQ[{1}, {9/8 - k/8, 5/4 - k/8, 11/8 - k/8, 3/2 - k/8, 13/8 - k/8, 7/4 - k/8, 15/8 - k/8, 2 - k/8}, -x^8/16777216])/(8 - k)!, {k, 0, 7}] / HypergeometricPFQ[{}, {1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8}, -x^8/16777216], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Apr 21 2021 *)
CROSSREFS
Row n=8 of A181937.
Sequence in context: A252871 A307044 A165618 * A059596 A327386 A341386
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 16 2014
STATUS
approved