OFFSET
0,8
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..500
Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [USA access only through the HATHI TRUST Digital Library]
Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [Access through ZOBODAT]
EXAMPLE
a(6) = 1: 123456.
a(7) = 6: 1234576, 1234675, 1235674, 1245673, 1345672, 2345671.
MAPLE
b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
`if`(t=0, add(b(u-j, o+j-1, irem(t+1, 6)), j=1..u),
add(b(u+j-1, o-j, irem(t+1, 6)), j=1..o)))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..35);
MATHEMATICA
nmax = 30; CoefficientList[Series[1 + Sum[(x^(6 - k) * HypergeometricPFQ[{1}, {7/6 - k/6, 4/3 - k/6, 3/2 - k/6, 5/3 - k/6, 11/6 - k/6, 2 - k/6}, -x^6/46656])/(6 - k)!, {k, 0, 5}] / HypergeometricPFQ[{}, {1/6, 1/3, 1/2, 2/3, 5/6}, -x^6/46656], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Apr 21 2021 *)
PROG
(Sage)
# From Peter Luschny, Feb 06 2017 (Start)
@cached_function
def b(u, o, t):
if u ==-o: return 1
if t == 0: return sum(b(u-j, o+j-1, (t+1) % 6) for j in (1..u))
return sum(b(u+j-1, o-j, (t+1) % 6) for j in (1..o))
a = lambda n: b(n, 0, 0)
print([a(n) for n in (0..28)]) # after Maple program
# Alternatively:
@cached_function
def A(m, n):
if n == 0: return 1
s = -1 if m.divides(n) else 1
t = [m*k for k in (0..(n-1)//m)]
return s*add(binomial(n, k)*A(m, k) for k in t)
A250283 = lambda n: (-1)^int(is_odd(n//6))*A(6, n)
print([A250283(n) for n in (0..28)])
# (End)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 16 2014
STATUS
approved