login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations p of [n] such that p(i) > p(i+1) iff i == 0 (mod 6).
4

%I #27 Aug 01 2023 12:13:59

%S 1,1,1,1,1,1,1,6,27,83,209,461,923,10284,80991,414961,1671853,5699149,

%T 17116009,278723178,3135810159,22493048843,124606826189,574688719793,

%U 2301250545971,49308397822776,721175428306971,6650954153090521,46893517738791361

%N Number of permutations p of [n] such that p(i) > p(i+1) iff i == 0 (mod 6).

%H Alois P. Heinz, <a href="/A250283/b250283.txt">Table of n, a(n) for n = 0..500</a>

%H Ludwig Seidel, <a href="https://babel.hathitrust.org/cgi/pt?id=hvd.32044092897461&amp;view=1up&amp;seq=176">Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen</a>, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [USA access only through the <a href="https://www.hathitrust.org/accessibility">HATHI TRUST Digital Library</a>]

%H Ludwig Seidel, <a href="https://www.zobodat.at/pdf/Sitz-Ber-Akad-Muenchen-math-Kl_1877_0157-0187.pdf">Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen</a>, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [Access through <a href="https://de.wikipedia.org/wiki/ZOBODAT">ZOBODAT</a>]

%e a(6) = 1: 123456.

%e a(7) = 6: 1234576, 1234675, 1235674, 1245673, 1345672, 2345671.

%p b:= proc(u, o, t) option remember; `if`(u+o=0, 1,

%p `if`(t=0, add(b(u-j, o+j-1, irem(t+1, 6)), j=1..u),

%p add(b(u+j-1, o-j, irem(t+1, 6)), j=1..o)))

%p end:

%p a:= n-> b(n, 0$2):

%p seq(a(n), n=0..35);

%t nmax = 30; CoefficientList[Series[1 + Sum[(x^(6 - k) * HypergeometricPFQ[{1}, {7/6 - k/6, 4/3 - k/6, 3/2 - k/6, 5/3 - k/6, 11/6 - k/6, 2 - k/6}, -x^6/46656])/(6 - k)!, {k, 0, 5}] / HypergeometricPFQ[{}, {1/6, 1/3, 1/2, 2/3, 5/6}, -x^6/46656], {x, 0, nmax}], x] * Range[0, nmax]! (* _Vaclav Kotesovec_, Apr 21 2021 *)

%o (Sage)

%o # From _Peter Luschny_, Feb 06 2017 (Start)

%o @cached_function

%o def b(u, o, t):

%o if u ==-o: return 1

%o if t == 0: return sum(b(u-j, o+j-1, (t+1) % 6) for j in (1..u))

%o return sum(b(u+j-1, o-j, (t+1) % 6) for j in (1..o))

%o a = lambda n: b(n, 0, 0)

%o print([a(n) for n in (0..28)]) # after Maple program

%o # Alternatively:

%o @cached_function

%o def A(m, n):

%o if n == 0: return 1

%o s = -1 if m.divides(n) else 1

%o t = [m*k for k in (0..(n-1)//m)]

%o return s*add(binomial(n, k)*A(m, k) for k in t)

%o A250283 = lambda n: (-1)^int(is_odd(n//6))*A(6, n)

%o print([A250283(n) for n in (0..28)])

%o # (End)

%Y Row n=6 of A181937.

%K nonn

%O 0,8

%A _Alois P. Heinz_, Nov 16 2014