login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217365
Series reversion of x + x^2 + x^3 + x^4 + x^5.
1
1, -1, 1, -1, 1, 0, -6, 27, -83, 209, -455, 845, -1169, 272, 5916, -29070, 98040, -274075, 660859, -1351756, 2110020, -1186110, -8227260, 47128770, -170898624, 505121130, -1281947030, 2772309230, -4708067030, 3936320480, 13030540120, -90168747031, 348836671587, -1077316101393
OFFSET
1,7
COMMENTS
Appears to obey an 8-term hypergeometric recurrence with 4th-order polynomial coefficients.
LINKS
R. J. Mathar and Robert Israel, Table of n, a(n) for n = 1..2066 (1..105 from R. J. Mathar)
R. J. Mathar, Series expansion of generalized Fresnel integrals, arXiv:1211.3963 (2012)
FORMULA
D-finite with recurrence: 5 n (5 n - 1) (5 n + 1) (5 n + 2) (5 n + 3) a(n) - (n + 1) (27906 n^4 + 198109 n^3 + 447051 n^2 + 405674 n + 128400) a(n + 1) + 25 (n + 2) (1875 n^4 + 28312 n^3 + 141513 n^2 + 287228 n + 204072) a(n + 2) + 250 (n + 2) (n + 3) (250 n^3 + 3031 n^2 + 11433 n + 13668) a(n + 3) + 625 (n + 2) (n + 3) (n + 4) (75 n^2 + 662 n + 1403) a(n + 4) + 3125 (n + 2) (n + 3) (n + 4) (n + 5) (6 n + 29) a(n + 5) + 3125(n + 2) (n + 3) (n + 4) (n + 5) (n + 6) a(n + 6) = 0. - Vladimir Reshetnikov, Jul 09 2015
From Robert Israel, Jul 10 2015: (Start)
G.f. G(x) satisfies G + G^2 + G^3 + G^4 + G^5 = x
and the differential equation
-2184*x^3+32760*x^2-163800*x+273000+(-10920*x^3+163800*x^2-819000*x+1365000)*G(x)+(2457000*x^4-24555336*x^3+33314040*x^2-22930200*x-10608000)*G'(x)+(11602500*x^5-88671024*x^4+64015500*x^3-18674400*x^2-27414000*x-9780000)*G''(x)+(7962500*x^6-48147528*x^5+12768480*x^4-2457200*x^3-7171500*x^2-6885000*x-1975000)*G'''(x)+(1137500*x^7-5485909*x^6-750720*x^5-1121525*x^4-654500*x^3-744375*x^2-475000*x-109375)*G''''(x) = 0
from which we can obtain the 8-term recurrence mentioned in the Comments:
1820*(5*n+1)*(5*n+2)*(5*n+3)*(5*n-1)*a(n)-13*(421993*n^4+2859670*n^3+6398855*n^2+5850050*n+1876272)*a(n+1)-60*(12512*n^4-187784*n^3-1717861*n^2-4206649*n-3230668)*a(n+2)-25*(44861*n^4+367454*n^3+1830175*n^2+6002422*n+7768608)*a(n+3)-500*(n+4)*(1309*n^3+22197*n^2+140942*n+279612)*a(n+4)-1875*(n+5)*(n+4)*(397*n^2+5657*n+18614)*a(n+5)-25000*(19*n+136)*(n+6)*(n+5)*(n+4)*a(n+6)-109375*(n+5)*(n+4)*(n+7)*(n+6)*a(n+7) = 0.
From the Lagrange inversion theorem,
a(n) = 1/n! * (d/dx)^(n-1) (p^n)(0) where p(x) = 1/(1+x+x^2+x^3+x^4).
(End)
Recurrence: 125*(n-3)*(n-2)*(n-1)*n*(3*n - 11)*(6*n - 23)*(6*n - 17)*a(n) = -100*(n-3)*(n-2)*(n-1)*(6*n - 23)*(144*n^3 - 1152*n^2 + 2921*n - 2310)*a(n-1) - 30*(n-3)*(n-2)*(7884*n^5 - 113004*n^4 + 636639*n^3 - 1760222*n^2 + 2386123*n - 1267420)*a(n-2) - 4*(n-3)*(6*n - 11)*(15048*n^5 - 240768*n^4 + 1533029*n^3 - 4855116*n^2 + 7647427*n - 4792620)*a(n-3) - 5*(3*n - 8)*(5*n - 21)*(5*n - 19)*(5*n - 18)*(5*n - 17)*(6*n - 17)*(6*n - 11)*a(n-4). - Vaclav Kotesovec, Aug 18 2015
EXAMPLE
If y=x+x^2+x^3+x^4+x^5, then x=y -y^2 +y^3 -y^4 +y^5 -6*y^7 +27*y^8 -83*y^9 +...
MAPLE
rec := 5*n*(5*n-1)*(5*n+1)*(5*n+2)*(5*n+3)*a(n)-(n+1)*(27906*n^4+198109*n^3+447051*n^2+405674*n+128400)*a(n+1)+(25*(n+2))*(1875*n^4+28312*n^3+141513*n^2+287228*n+204072)*a(n+2)+(250*(n+2))*(n+3)*(250*n^3+3031*n^2+11433*n+13668)*a(n+3)+(625*(n+2))*(n+3)*(n+4)*(75*n^2+662*n+1403)*a(n+4)+(3125*(n+2))*(n+3)*(n+4)*(n+5)*(6*n+29)*a(n+5)+(3125*(n+2))*(n+3)*(n+4)*(n+5)*(n+6)*a(n+6):
f:= gfun:-rectoproc({rec, a(1) = 1, a(2) = -1, a(3) = 1, a(4) = -1, a(5) = 1, a(6) = 0}, a(n), remember):
map(f, [$1..50]); # Robert Israel, Jul 10 2015
MATHEMATICA
InverseSeries[x + x^2 + x^3 + x^4 + x^5 + O[x]^50][[3]] (* Vladimir Reshetnikov, Jul 09 2015 *)
RecurrenceTable[{5 (-8+3 n) (-21+5 n) (-19+5 n) (-18+5 n) (-17+5 n) (-17+6 n) (-11+6 n) a[-4+n]+4 (-3+n) (-11+6 n) (-4792620+7647427 n-4855116 n^2+1533029 n^3-240768 n^4+15048 n^5) a[-3+n]+30 (-3+n) (-2+n) (-1267420+2386123 n-1760222 n^2+636639 n^3-113004 n^4+7884 n^5) a[-2+n]+100 (-3+n) (-2+n) (-1+n) (-23+6 n) (-2310+2921 n-1152 n^2+144 n^3) a[-1+n]+125 (-3+n) (-2+n) (-1+n) n (-11+3 n) (-23+6 n) (-17+6 n) a[n]==0, a[1]==1, a[2]==-1, a[3]==1, a[4]==-1}, a, {n, 1, 40}] (* Vaclav Kotesovec, Aug 18 2015 *)
PROG
(PARI) Vec(serreverse(x + x^2 + x^3 + x^4 + x^5 + O(x^50))) \\ Michel Marcus, Aug 03 2015
CROSSREFS
Cf. A063019 (x-x^2+x^3-x^4), A103779 (x+x^2+x^3).
Sequence in context: A239568 A198958 A027313 * A307040 A124089 A250283
KEYWORD
sign
AUTHOR
R. J. Mathar, Oct 01 2012
STATUS
approved