login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217366
a(n) = ((n+6) / gcd(n+6,4)) * (n / gcd(n,4)).
3
0, 7, 2, 27, 5, 55, 9, 91, 14, 135, 20, 187, 27, 247, 35, 315, 44, 391, 54, 475, 65, 567, 77, 667, 90, 775, 104, 891, 119, 1015, 135, 1147, 152, 1287, 170, 1435, 189, 1591, 209, 1755, 230, 1927, 252, 2107, 275, 2295, 299, 2491, 324, 2695, 350, 2907, 377
OFFSET
0,2
COMMENTS
The 6th sequence (p=6) of the family A060819(n)*A060819(n+p).
FORMULA
a(n) = 8^(n mod 2 - 1)*n*(n + 6).
G.f.: x*(7 + 2*x + 6*x^2 - x^3 - 5*x^4)/(1 - x^2)^3. - Bruno Berselli, Oct 01 2012
From Colin Barker, Jan 27 2016: (Start)
a(n) = (9 - 7*(-1)^n)*n*(n + 6)/16.
a(n) = (n^2 + 6*n)/8 for n even.
a(n) = n^2 + 6*n for n odd. (End)
Sum_{n>=1} 1/a(n) = 133/90. - Amiram Eldar, Aug 12 2022
MATHEMATICA
a[n_] := 8^(Mod[n, 2] - 1)*n*(n + 6); Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Oct 01 2012 *)
CoefficientList[Series[x*(7 + 2*x + 6*x^2 - x^3 - 5*x^4)/(1 - x^2)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Dec 15 2012 *)
LinearRecurrence[{0, 3, 0, -3, 0, 1}, {0, 7, 2, 27, 5, 55}, 60] (* Harvey P. Dale, Sep 14 2022 *)
PROG
(PARI) concat(0, Vec(x*(7+2*x+6*x^2-x^3-5*x^4)/((1-x)^3*(1+x)^3) + O(x^100))) \\ Colin Barker, Jan 27 2016
(PARI) vector(50, n, n--; (9-7*(-1)^n)/16*n*(n+6)) \\ G. C. Greubel, Sep 21 2018
(Magma) [(9-7*(-1)^n)/16*n*(n+6): n in [0..50]]; // G. C. Greubel, Sep 21 2018
CROSSREFS
Sequence in context: A269168 A279943 A279999 * A282609 A282450 A280337
KEYWORD
nonn,easy
AUTHOR
STATUS
approved