The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A217364 a(n) = 2^n*binomial(5*n, n)/(4*n+1). 1
 1, 2, 20, 280, 4560, 80960, 1520064, 29680640, 596593920, 12262581760, 256556410880, 5445566730240, 116974976102400, 2538140268625920, 55548588652625920, 1224777962595287040, 27180522769369333760, 606648758810237337600 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Old name was: Series reversion of x - 2*x^5. Regular blocks of 3 intermediate zeros have been left out of the sequence: If y = x - 2x^5, then x = y + 2*y^5 + 20*y^9 + 280*y^13 + 4560*y^17 - ... a(n) is the number of lattice paths (Schroeder paths) from (0,0) to (n,5n) with unit steps N=(0,1), E=(1,0) and D=(1,1) staying weakly above the line y = 5x with the total number of occurrences of NE and D equal to n. - Michael D. Weiner, Aug 21 2019 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..724 (terms n=1..76 from Robert Israel) D. Birmajer, J. B. Gil, J. D. Gil, M. D. Weiner, SchrÃ¶der Coloring and Applications, arXiv:1908.08103 [math.CO], 2019. R. J. Mathar, Series Expansion of Generalized Fresnel Integrals, arXiv:1211.3963 [math.CA], 2012. FORMULA Apparently (4*n+1)*(4*n)*(4*n-1)*(4*n-2)*a(n) - 10*(5*n-4)*(5*n-3)*(5*n-2)*(5*n-1)*a(n-1) = 0. a(n) ~ 5^(5*n)/(2^(7*n+4)*sqrt(Pi/10)*n^(3/2)). - Vaclav Kotesovec, Aug 20 2013 a(n) = Gamma(n+1/5)*Gamma(n+2/5)*Gamma(n+3/5)*Gamma(n+4/5)*6250^(n+1)*sqrt(5)/(25000*pi^2*Gamma(4*n+2)). - Robert Israel, May 19 2014 a(n) = 5*2^n*Gamma(5*n)/(Gamma(n)*Gamma(4*n+2)) for n > 0. - Peter Luschny, May 19 2014 G.f.: F([1/5, 2/5, 3/5, 4/5], [1/2, 3/4, 5/4], 3125*x/128), where F is the generalized hypergeometric function. - Stefano Spezia, Sep 03 2019 MAPLE A217364 := j -> pochhammer(1/5, j)*pochhammer(2/5, j)*pochhammer(3/5, j)*pochhammer(4/5, j)*6250^j/(4*j+1)!: seq(A217364(n), n=0..100); # Robert Israel, May 19 2014 MATHEMATICA Table[CoefficientList[InverseSeries[Series[x-2*x^5, {x, 0, 100}], x], x][[4*n-2]], {n, 1, 20}] (* Vaclav Kotesovec, Aug 20 2013 *) Table[2^n Binomial[5 n, n] / (4 n + 1), {n, 0, 20}] (* Michael D. Weiner, Aug 21 2019 *) PROG (Sage) A217364 = lambda n: 5*2^n*gamma(5*n)/(gamma(n)*gamma(4*n+2)) if n > 0 else 1 [A217364(n) for n in (0..18)] # Peter Luschny, May 19 2014 (PARI) for(n=0, 20, print1(round(if(n==0, 1, 5*2^n*gamma(5*n)/(gamma(n)*gamma(4*n+2)))), ", ")) \\ G. C. Greubel, Apr 01 2017 (PARI) {my(x='x+O('x^133), v=Vec(serreverse(x - 2*x^5))); vector(#v\4, n, v[4*n-3] ) } \\ Joerg Arndt, Apr 02 2017 (MAGMA) [2^n*Binomial(5*n, n)/(4*n+1): n in [0..25]]; // Michael D. Weiner, Aug 21 2019 CROSSREFS Cf. A153231 (x-2*x^3), A217360 (x-2*x^4). Sequence in context: A155671 A303616 A231499 * A326010 A246482 A124211 Adjacent sequences:  A217361 A217362 A217363 * A217365 A217366 A217367 KEYWORD nonn AUTHOR R. J. Mathar, Oct 01 2012 EXTENSIONS New definition and offset from Michael D. Weiner, Sep 03 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 5 19:09 EDT 2021. Contains 343573 sequences. (Running on oeis4.)