login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217360
a(n) = 2^n*binomial(4*n, n)/(3*n+1).
3
1, 2, 16, 176, 2240, 31008, 453376, 6888960, 107707392, 1721477120, 28000141312, 461964898304, 7712495058944, 130050777006080, 2211737871974400, 37892693797109760, 653389823437701120, 11330548232319664128, 197475886172892823552
OFFSET
0,2
COMMENTS
Old name was: Series reversion of x - 2*x^4.
Regular blocks of 2 intermediate zeros have been removed from the sequence: If y = x - 2*x^4, then x = y + 2*y^4 + 16*y^7 + 176*y^10 + 2240*y^13 + 31008*y^16 + ...
a(n) is the number of lattice paths (Schroeder paths) from (0,0) to (n,4n) with unit steps N=(0,1), E=(1,0) and D=(1,1) staying weakly above the line y = 4x with the total number of occurrences of NE and D equal to n. - Michael D. Weiner, Jul 25 2019
LINKS
D. Birmajer, J. B. Gil, J. D. Gil and M. D. Weiner, Schröder Coloring and Applications, arXiv:1908.08103 [math.CO], 2019.
FORMULA
D-finite with recurrence 3*n*(3*n-1)*(3*n+1)*a(n)- 8*(4*n-1)*(4*n-3)*(4*n-2)*a(n-1) = 0, so a(n) = 8^n*A060706(n)/A100089(n) = 2^n*A002293(n).
a(n) = [x^(3*n)](f(x)/x) where f(x) is the reversion of x - 2*x^4.
G.f.: F([1/4, 1/2, 3/4], [2/3, 4/3], 512*x/27), where F is the generalized hypergeometric function. - Stefano Spezia, Aug 18 2019
G.f. A(x) satisfies: A(x) = 1 / (1 - 2 * x * A(x)^3). - Ilya Gutkovskiy, Nov 12 2021
MAPLE
A100089 := proc(n)
(3*n+1)! ;
end proc:
A060706 := proc(n)
(4*n)!/n!/4^n ;
end proc:
A217360 := proc(n)
8^(n)*A060706(n)/A100089(n) ;
end proc:
seq(A217360(n), n=0..20);
MATHEMATICA
Table[2^n Binomial[4 n, n] / (3 n + 1), {n, 0, 20}] (* Vincenzo Librandi, Jul 26 2019 *)
PROG
(Magma) [2^n*Binomial(4*n, n)/(3*n+1): n in [0..25]]; // Vincenzo Librandi, Jul 26 2019
CROSSREFS
Cf. A153231 (x+2*x^3).
Sequence in context: A367384 A138014 A206988 * A371669 A363311 A052606
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Oct 01 2012
EXTENSIONS
Offset decreased by 1 and name changed by Michael D. Weiner, Jul 25 2019
STATUS
approved