login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367384
Expansion of g.f. A(x) satisfying A( sqrt(A(x)^2 - 8*A(x)^3) ) = x.
0
1, 2, 16, 172, 2120, 28264, 396192, 5746480, 85394656, 1291778368, 19805198784, 306834276416, 4793670528640, 75415927948416, 1193652980090880, 18994846756882176, 303766882134726144, 4880209392051146752, 78739290124904116224, 1275444751485628848128, 20735204112205333970944
OFFSET
1,2
FORMULA
G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) x = A( sqrt(A(x)^2 - 8*A(x)^3) ).
(2) x^2 = A(A(x))^2 - 8*A(A(x))^3, where 2*A(A(x/2)) is the g.f. of A078531.
(3) [x^(n+1)] A(A(x)) = 8^n * binomial((3*n-1)/2, n)/(n+1) = 2^n*A078531(n) for n >= 0.
EXAMPLE
G.f.: A(x) = x + 2*x^2 + 16*x^3 + 172*x^4 + 2120*x^5 + 28264*x^6 + 396192*x^7 + 5746480*x^8 + 85394656*x^9 + 1291778368*x^10 + ...
where A( sqrt(A(x)^2 - 8*A(x)^3) ) = x.
RELATED SERIES.
A(x)^2 = x^2 + 4*x^3 + 36*x^4 + 408*x^5 + 5184*x^6 + 70512*x^7 + 1002864*x^8 + 14711456*x^9 + 220670592*x^10 + ...
A(x)^3 = x^3 + 6*x^4 + 60*x^5 + 716*x^6 + 9384*x^7 + 130344*x^8 + 1882576*x^9 + 27950736*x^10 + ...
Let Ai(x) be the series reversion of A(x), then
Ai(x)^2 = A(x)^2 - 8*A(x)^3 = x^2 - 4*x^3 - 12*x^4 - 72*x^5 - 544*x^6 - 4560*x^7 - 39888*x^8 - 349152*x^9 - 2935296*x^10 - ...
and
Ai(x) = sqrt(A(x)^2 - 8*A(x)^3) = x - 2*x^2 - 8*x^3 - 52*x^4 - 408*x^5 - 3512*x^6 - 31584*x^7 - 287056*x^8 - 2560288*x^9 - ...
Also,
A(A(x)) = x + 4*x^2 + 40*x^3 + 512*x^4 + 7392*x^5 + 114688*x^6 + 1867008*x^7 + 31457280*x^8 + 543921664*x^9 + ... + 2^n*A078531(n)*x^(n+1) + ...
which satisfies A(A(x))^2 - 8*A(A(x))^3 = x^2, where
A(A(x))^2 = x^2 + 8*x^3 + 96*x^4 + 1344*x^5 + 20480*x^6 + 329472*x^7 + ...
A(A(x))^3 = x^3 + 12*x^4 + 168*x^5 + 2560*x^6 + 41184*x^7 + 688128*x^8 + ...
PROG
(PARI) {a(n) = my(A=1, V=[1]); for(i=1, n, V = concat(V, 0); A = x*Ser(V);
V[#V] = polcoeff( x - subst(A, x, sqrt(A^2 - 8*A^3)), #V)/2 ); V[n]}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A108999 A378378 A355408 * A138014 A206988 A217360
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 29 2023
STATUS
approved