login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273925
G.f. satisfies: A( A(x)^2 - A(x)^3 ) = x^2, where A(x) = Sum_{n>=1} a(n)*x^n / 2^A273926(n).
3
1, 1, 3, 3, 175, 41, 4947, 321, 687611, 11403, 25132181, 107305, 1941554203, 2111325, 77643067507, 21427329, 25549683166419, 1782548851, 1073363084982753, 18891311061, 91744420207896017, 406630578535, 3975787925128277349, 4432136534071, 697211573846047770799, 195301983407647, 30867311449650538783337, 2171049926840877, 2756162894749311377078579, 48645967088000101
OFFSET
1,3
COMMENTS
The denominators of the coefficients in the g.f. A(x) are powers of 2 that appear to occur only once.
Both bisections of this sequence appear to be monotonically increasing.
The limit a(n+2)/a(n) appears to exist and is near 6.2...
LINKS
FORMULA
G.f. A(x) = Sum_{n>=1} a(n)*x^n / 2^A273926(n) satisfies:
(1) A( +sqrt( A(x^2 - x^3) ) ) = x.
(2) A( -sqrt( A(x^2 - x^3) ) ) = (1 - x - sqrt(1 + 2*x - 3*x^2))/2.
(3) A( A(x)^3 - A(x)^2 ) = (1 - x^2 - sqrt(1 + 2*x^2 - 3*x^4))/2.
EXAMPLE
G.f.: A(x) = x + 1/2*x^2 + 3/8*x^3 + 3/4*x^4 + 175/128*x^5 + 41/16*x^6 + 4947/1024*x^7 + 321/32*x^8 + 687611/32768*x^9 + 11403/256*x^10 + 25132181/262144*x^11 + 107305/512*x^12 + 1941554203/4194304*x^13 + 2111325/2048*x^14 + 77643067507/33554432*x^15 + 21427329/4096*x^16 + 25549683166419/2147483648*x^17 + 1782548851/65536*x^18 + 1073363084982753/17179869184*x^19 + 18891311061/131072*x^20 + 91744420207896017/274877906944*x^21 + 406630578535/524288*x^22 + 3975787925128277349/2199023255552*x^23 + 4432136534071/1048576*x^24 +...+ a(n)*x^n/2^A273926(n) +...
such that A( A(x)^2 - A(x)^3 ) = x^2 and A( +sqrt( A(x^2 - x^3) ) ) = x.
RELATED SERIES.
The g.f. is related to the Motzkin numbers by the relation:
A( -sqrt( A(x^2 - x^3) ) ) = -x + x^2 - x^3 + 2*x^4 - 4*x^5 + 9*x^6 - 21*x^7 + 51*x^8 - 127*x^9 + 323*x^10 - 835*x^11 +...+ (-1)^n*A001006(n-2)*x^n +...
which equals (1 - x - sqrt(1 + 2*x - 3*x^2))/2.
Also, we have
A( A(x)^3 - A(x)^2 ) = (1 - x^2 - sqrt(1 + 2*x^2 - 3*x^4))/2.
A relevant series begins:
A(x^2 - x^3) = x^2 - x^3 + 1/2*x^4 - x^5 + 7/8*x^6 - 9/8*x^7 + 15/8*x^8 - 27/8*x^9 + 751/128*x^10 - 1259/128*x^11 + 1087/64*x^12 - 1859/64*x^13 + 51307/1024*x^14 - 88509/1024*x^15 + 153519/1024*x^16 - 271065/1024*x^17 + 15515931/32768*x^18 - 27920307/32768*x^19 + 12582747/8192*x^20 - 22730223/8192*x^21 + 1317324005/262144*x^22 - 2391803575/262144*x^23 + 4354015459/262144*x^24 - 7946645097/262144*x^25 +...
Let B(x) be the series reversion of g.f. A(x), so that A(B(x)) = x,
then B(x) = sqrt( A(x^2 - x^3) ) and begins
sqrt( A(x^2 - x^3) ) = x - 1/2*x^2 + 1/8*x^3 - 7/16*x^4 + 27/128*x^5 - 103/256*x^6 + 629/1024*x^7 - 2535/2048*x^8 + 66835/32768*x^9 - 222155/65536*x^10 + 1517887/262144*x^11 - 5140113/524288*x^12 + 70575503/4194304*x^13 - 241166467/8388608*x^14 + 1663932701/33554432*x^15 - 5878842599/67108864*x^16 + 336833847555/2147483648*x^17 - 1211274078451/4294967296*x^18 + 8710075650043/17179869184*x^19 - 31385188980941/34359738368*x^20 + 453666114969205/274877906944*x^21 - 1644082529689977/549755813888*x^22 + 11949781587586819/2199023255552*x^23 +...
Also, note that A(x)^2 - A(x)^3 = B(x^2) is an even function, where
A(x)^2 = x^2 + x^3 + x^4 + 15/8*x^5 + 29/8*x^6 + 903/128*x^7 + 221/16*x^8 + 29559/1024*x^9 + 7851/128*x^10 + 4320363/32768*x^11 + 73433/256*x^12 + 165702201/262144*x^13 + 1439981/1024*x^14 + 13220447555/4194304*x^15 + 14569809/2048*x^16 + 542234209095/33554432*x^17 +...
A(x)^3 = x^3 + 3/2*x^4 + 15/8*x^5 + 7/2*x^6 + 903/128*x^7 + 57/4*x^8 + 29559/1024*x^9 + 489/8*x^10 + 4320363/32768*x^11 + 1149/4*x^12 + 165702201/262144*x^13 + 179919/128*x^14 + 13220447555/4194304*x^15 + 1821543/256*x^16 + 542234209095/33554432*x^17 +...
The bisections of this sequence begin:
odd bisection: [1, 3, 175, 4947, 687611, 25132181, 1941554203, 77643067507, 25549683166419, 1073363084982753, 91744420207896017, 3975787925128277349, ...];
even bisection: [1, 3, 41, 321, 11403, 107305, 2111325, 21427329, 1782548851, 18891311061, 406630578535, 4432136534071, 195301983407647, 2171049926840877, ...].
PROG
(PARI) {a(n) = my(A=x); for(i=0, n, A = serreverse( sqrt(subst(A, x, x^2 - x^3 +x^2*O(x^n) )) )); numerator(polcoeff(A, n))}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A071536 A094755 A152418 * A113457 A113466 A007301
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 04 2016
STATUS
approved