login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355408
Expansion of e.g.f. 1/(1 + exp(x) - exp(3*x)).
5
1, 2, 16, 170, 2416, 42962, 916696, 22819610, 649207456, 20778364322, 738918769576, 28905116527850, 1233506128752496, 57025618592932082, 2839117599033828856, 151446758367400488890, 8617182795217834505536, 520954229292164353554242
OFFSET
0,2
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} (3^k - 1) * binomial(n,k) * a(n-k).
a(n) ~ n! / ((3 + 2*r) * log(r)^(n+1)), where r = 2*cosh(log((25 + 3*sqrt(69)) / 2) / 6)/sqrt(3). - Vaclav Kotesovec, Jul 01 2022
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1+exp(x)-exp(3*x))))
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, (3^j-1)*binomial(i, j)*v[i-j+1])); v;
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jul 01 2022
STATUS
approved