login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355411
Expansion of e.g.f. 1/(3 - exp(2*x) - exp(3*x)).
0
1, 5, 63, 1175, 29211, 907775, 33852603, 1472830175, 73232729451, 4096474833695, 254608472798043, 17407167078420575, 1298290575826434891, 104900562662494154015, 9127848307446874753083, 850985644429074730049375, 84626187772620135685119531
OFFSET
0,2
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} (3^k + 2^k) * binomial(n,k) * a(n-k).
a(n) ~ n! / ((9 - r^2) * log(r)^(n+1)), where r = (-1 + 2*cosh(log((79 + 9*sqrt(77))/2)/3))/3. - Vaclav Kotesovec, Jul 01 2022
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(3-exp(2*x)-exp(3*x))))
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, (3^j+2^j)*binomial(i, j)*v[i-j+1])); v;
CROSSREFS
Sequence in context: A243218 A112788 A361406 * A334907 A218102 A306763
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jul 01 2022
STATUS
approved