The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A355414 Expansion of the e.g.f. log((1 - x) / (1 - 2*x)) / (1 - x)^5. 2
 0, 1, 13, 149, 1750, 21894, 295500, 4320420, 68487120, 1176564240, 21883528800, 440117949600, 9557404012800, 223720054790400, 5634130146624000, 152315974848038400, 4409413104676608000, 136318041562123008000, 4487618159996944896000, 156852415886275726848000, 5803748680475885432832000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Conjecture: For p prime, a(p) == -1 (mod p). LINKS Table of n, a(n) for n=0..20. FORMULA a(n) = Sum_{k=0..n} (-1)^(k+1)*k!*A062140(n, k+1). a(0) = 0, a(n) = n!*Sum_{k=1..n} A000332(n-k+4)*(2^k-1)/k. a(n) = binomial(n+4, 5)*n!*hypergeom([1 - n, 1, 1], [2, 6], -1). - Peter Luschny, Jul 01 2022 D-finite with recurrence a(n) +(-4*n-5)*a(n-1) +(n+3)*(5*n-3)*a(n-2) -2*(n-2)*(n+3)*(n+2)*a(n-3)=0. - R. J. Mathar, Jul 27 2022 MAPLE A355414 := proc(n) n!*binomial(n+4, 5)*hypergeom([1-n, 1, 1], [2, 6], -1) ; simplify(%) ; end proc: seq(A355414(n), n=0..40) ; # R. J. Mathar, Jul 27 2022 CROSSREFS Cf. A000332, A062140, A355171, A355372, A355407. Sequence in context: A090667 A125448 A163148 * A345217 A185405 A051475 Adjacent sequences: A355411 A355412 A355413 * A355415 A355416 A355417 KEYWORD nonn AUTHOR Mélika Tebni, Jul 01 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 03:04 EST 2023. Contains 367622 sequences. (Running on oeis4.)