login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355414
Expansion of the e.g.f. log((1 - x) / (1 - 2*x)) / (1 - x)^5.
2
0, 1, 13, 149, 1750, 21894, 295500, 4320420, 68487120, 1176564240, 21883528800, 440117949600, 9557404012800, 223720054790400, 5634130146624000, 152315974848038400, 4409413104676608000, 136318041562123008000, 4487618159996944896000, 156852415886275726848000, 5803748680475885432832000
OFFSET
0,3
COMMENTS
Conjecture: For p prime, a(p) == -1 (mod p).
FORMULA
a(n) = Sum_{k=0..n} (-1)^(k+1)*k!*A062140(n, k+1).
a(0) = 0, a(n) = n!*Sum_{k=1..n} A000332(n-k+4)*(2^k-1)/k.
a(n) = binomial(n+4, 5)*n!*hypergeom([1 - n, 1, 1], [2, 6], -1). - Peter Luschny, Jul 01 2022
D-finite with recurrence a(n) +(-4*n-5)*a(n-1) +(n+3)*(5*n-3)*a(n-2) -2*(n-2)*(n+3)*(n+2)*a(n-3)=0. - R. J. Mathar, Jul 27 2022
MAPLE
A355414 := proc(n)
n!*binomial(n+4, 5)*hypergeom([1-n, 1, 1], [2, 6], -1) ;
simplify(%) ;
end proc:
seq(A355414(n), n=0..40) ; # R. J. Mathar, Jul 27 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Mélika Tebni, Jul 01 2022
STATUS
approved