login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A355414 Expansion of the e.g.f. log((1 - x) / (1 - 2*x)) / (1 - x)^5. 2
0, 1, 13, 149, 1750, 21894, 295500, 4320420, 68487120, 1176564240, 21883528800, 440117949600, 9557404012800, 223720054790400, 5634130146624000, 152315974848038400, 4409413104676608000, 136318041562123008000, 4487618159996944896000, 156852415886275726848000, 5803748680475885432832000 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Conjecture: For p prime, a(p) == -1 (mod p).
LINKS
FORMULA
a(n) = Sum_{k=0..n} (-1)^(k+1)*k!*A062140(n, k+1).
a(0) = 0, a(n) = n!*Sum_{k=1..n} A000332(n-k+4)*(2^k-1)/k.
a(n) = binomial(n+4, 5)*n!*hypergeom([1 - n, 1, 1], [2, 6], -1). - Peter Luschny, Jul 01 2022
D-finite with recurrence a(n) +(-4*n-5)*a(n-1) +(n+3)*(5*n-3)*a(n-2) -2*(n-2)*(n+3)*(n+2)*a(n-3)=0. - R. J. Mathar, Jul 27 2022
MAPLE
A355414 := proc(n)
n!*binomial(n+4, 5)*hypergeom([1-n, 1, 1], [2, 6], -1) ;
simplify(%) ;
end proc:
seq(A355414(n), n=0..40) ; # R. J. Mathar, Jul 27 2022
CROSSREFS
Sequence in context: A090667 A125448 A163148 * A345217 A185405 A051475
KEYWORD
nonn
AUTHOR
Mélika Tebni, Jul 01 2022
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 03:04 EST 2023. Contains 367622 sequences. (Running on oeis4.)