OFFSET
0,3
COMMENTS
Conjecture: For p prime, a(p) == -1 (mod p).
FORMULA
a(n) = Sum_{k=0..n} (-1)^(k+1)*k!*A062140(n, k+1).
a(0) = 0, a(n) = n!*Sum_{k=1..n} A000332(n-k+4)*(2^k-1)/k.
a(n) = binomial(n+4, 5)*n!*hypergeom([1 - n, 1, 1], [2, 6], -1). - Peter Luschny, Jul 01 2022
D-finite with recurrence a(n) +(-4*n-5)*a(n-1) +(n+3)*(5*n-3)*a(n-2) -2*(n-2)*(n+3)*(n+2)*a(n-3)=0. - R. J. Mathar, Jul 27 2022
MAPLE
A355414 := proc(n)
n!*binomial(n+4, 5)*hypergeom([1-n, 1, 1], [2, 6], -1) ;
simplify(%) ;
end proc:
seq(A355414(n), n=0..40) ; # R. J. Mathar, Jul 27 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Mélika Tebni, Jul 01 2022
STATUS
approved