|
|
A185405
|
|
1/7 the number of n X 2 0..6 arrays with every element equal to exactly one or two of its horizontal and vertical neighbors.
|
|
1
|
|
|
1, 13, 150, 1848, 22656, 278832, 3430776, 42221928, 519611520, 6394769688, 78699293256, 968538893952, 11919644165496, 146693048343528, 1805326578739200, 22217849450044248, 273431322619829256
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
Empirical: a(n) = 11*a(n-1) + 23*a(n-2) - 72*a(n-3) - 144*a(n-4) - 216*a(n-5).
Empirical g.f.: x*(1 + 2*x - 16*x^2 - 29*x^3 - 42*x^4) / (1 - 11*x - 23*x^2 + 72*x^3 + 144*x^4 + 216*x^5). - Colin Barker, Apr 15 2018
|
|
EXAMPLE
|
Some solutions for 3 X 2 with a(1,1)=0:
..0..0....0..0....0..0....0..0....0..0....0..2....0..3....0..0....0..0....0..0
..2..5....2..2....5..1....6..6....2..2....0..2....0..3....0..6....0..1....6..5
..2..5....5..5....5..1....5..5....4..4....3..3....3..3....6..6....0..1....6..5
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|