OFFSET
0,2
COMMENTS
a(n) is the number of ways to seat 4n bridge players at n circular tables with four players at each table. - Geoffrey Critzer, Dec 17 2011
LINKS
Harry J. Smith, Table of n, a(n) for n = 0..100
FORMULA
a(n) = (4n)! / (n! * 4^n). Recursion: a(0) = 1, a(1) = 6, for n >= 2 a(n) = a(n-1) * C(4n - 1, 3)* 6 = a(n-1)*(4n-1)*(4n-2)*(4n-3). Using Stirling's formula in A000142 we have a(n) ~ 2 * 64^n * (n/e)^(3n).
E.g.f.: exp(x^4/4). - Geoffrey Critzer, Dec 17 2011
Write the generating function for this sequence in the form A(x) = sum_{n>=0} a(n)* x^(3*n+1)/(3*n+1)!. Then A'(x)*( 1 - A(x)^3) = 1, consequently A(x) is a root of z^4 - 4*z + 4*x with A(0) = 0. Cf. A052502. - Peter Bala, Jan 02 2015
MAPLE
for n from 0 to 20 do printf(`%d, `, (4*n)! / (n! * 4^n)) od:
MATHEMATICA
nn = 40; a = x^4/4; f[list_] := Select[list, # > 0 &];
f[Range[0, nn]! CoefficientList[Series[Exp[a], {x, 0, nn}], x]] (* Geoffrey Critzer, Dec 17 2011 *)
PROG
(PARI) { for (n=0, 100, write("b060706.txt", n, " ", (4*n)! / (n! * 4^n)); ) } \\ Harry J. Smith, Jul 09 2009
CROSSREFS
KEYWORD
nonn
AUTHOR
Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 21 2001
EXTENSIONS
More terms from James A. Sellers, Apr 23 2001
STATUS
approved