login
A052278
a(n) = (4n+3)!/4^n.
1
6, 1260, 2494800, 20432412000, 475176173472000, 25246110096567360000, 2658415393168543008000000, 501882242076289234480320000000, 157671325170687025904337331200000000, 77811744999685071405945898971187200000000, 57616484702466807973246700352205274112000000000
OFFSET
0,1
FORMULA
From Amiram Eldar, Feb 25 2022: (Start)
Sum_{n>=0} 1/a(n) = (sinh(sqrt(2)) - sin(sqrt(2)))/(4*sqrt(2)).
Sum_{n>=0} (-1)^n/a(n) = (cosh(1)*sin(1) - sinh(1)*cos(1))/4. (End)
MATHEMATICA
Table[(4n+3)!/4^n, {n, 0, 20}] (* Harvey P. Dale, Mar 14 2020 *)
PROG
(PARI) a(n) = (4*n+3)!/4^n; \\ Michel Marcus, Feb 25 2022
CROSSREFS
Cf. A052277.
Sequence in context: A001324 A183585 A060706 * A264103 A202381 A067510
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 05 2000
STATUS
approved