login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052504 Number of permutations sigma of [5n] without fixed points such that sigma^5 = Id. 6
1, 24, 72576, 1743565824, 162193467211776, 41363226782215962624, 23578031983305871878782976, 26242915470187034742010543079424, 51804144968120491069562620291816882176, 168779147605615794796420686413626405734580224, 858246016274098851318874304509764200194078068965376 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

For n >= 1 a(n) is the size of the conjugacy class in the symmetric group S_(5n) consisting of permutations whose cycle decomposition is a product of n disjoint 5-cycles.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..100

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 29

FORMULA

a(n) = (5n)! * [x^(5n)] exp(x^5/5).

From Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 21 2001: (Start)

a(n) = (5*n)! / (n! * 5^n).

a(0) = 1, a(1) = 24, for n >= 2 a(n) = a(n-1) * C(5*n - 1, 4)* 24 = (5*n-1)*(5*n-2)*(5*n-3)*(5*n-4)*a(n-1).

a(n) ~ sqrt(5) * 625^n * (n/e)^(4n). (End)

Write the generating function for this sequence in the form A(x) = Sum_{n >= 0} a(n)* x^(4*n+1)/(4*n+1)!. Then A'(x)*( 1 - A(x)^4) = 1. Cf. A052502. - Peter Bala, Jan 02 2015

MAPLE

spec := [S, {S=Set(Union(Cycle(Z, card=5)))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);

MATHEMATICA

nn = 50; Select[Range[0, nn]! CoefficientList[Series[Exp[x^5/5], {x, 0, nn}], x], # > 0 &] (* Geoffrey Critzer, Aug 19 2012 *)

PROG

(PARI) {a(n) = (5*n)!/(5^n*n!)}; \\ G. C. Greubel, May 14 2019

(Magma) [Factorial(5*n)/(5^n*Factorial(n)): n in [0..15]]; // G. C. Greubel, May 14 2019

(Sage) [factorial(5*n)/(5^n*factorial(n)) for n in (0..15)] # G. C. Greubel, May 14 2019

(GAP) List([0..15], n-> Factorial(5*n)/(5^n*Factorial(n))) # G. C. Greubel, May 14 2019

CROSSREFS

Cf. A001147, A052502, A060706, A261317, A261381.

Quintisection of column k=5 of A261430.

Sequence in context: A158664 A125048 A003920 * A159388 A172628 A294318

Adjacent sequences: A052501 A052502 A052503 * A052505 A052506 A052507

KEYWORD

easy,nonn

AUTHOR

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 08:16 EST 2022. Contains 358691 sequences. (Running on oeis4.)