login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052503 Number of permutations sigma of [2n] without fixed points such that sigma^4 = Id. 4
1, 1, 9, 105, 2625, 76545, 3440745, 176080905, 12034447425, 922995698625, 87505195602825, 9203114782686825, 1141501848477415425, 155540530213013570625, 24232951756530007115625, 4112826185329479728735625, 781060320618828163499210625 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..280

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 28

FORMULA

a(n) = (2n)! * [x^(2n)] exp(x^2/2 + x^4/4).

D-finite with recurrence a(n) +(-2*n+1)*a(n-1) -2*(n-1)*(2*n-1)*(2*n-3)*a(n-2)=0, with a(0)=1, a(1)=1, a(2)=9. - Corrected by R. J. Mathar, Feb 20 2020 to skip zeros.

a(n) = 2^n*Gamma(n+1/2)*A047974(n)/Pi^(1/2). - Mark van Hoeij, Oct 30 2011

MAPLE

spec := [S, {S=Set(Union(Cycle(Z, card=2), Cycle(Z, card=4)))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);

MATHEMATICA

With[{nmax = 40}, CoefficientList[Series[Exp[x^2*(2 + x^2)/4], {x, 0, nmax}], x]*(Range[0, nmax])!][[1 ;; -1 ;; 2]] (* G. C. Greubel, May 14 2019 *)

PROG

(PARI) x='x+O('x^40); v=Vec(serlaplace( exp(x^2/2 + x^4/4) )); vector(#v\2, n, v[2*n-1]) \\ G. C. Greubel, May 14 2019

(Magma) m:=40; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x^2/2 + x^4/4) )); [Factorial(2*n-2)*b[2*n-1]: n in [1..Floor((m-2)/2)]]; // G. C. Greubel, May 14 2019

(Sage) m = 40; T = taylor(exp(x^2/2 + x^4/4), x, 0, 2*m+2); [factorial(2*n)*T.coefficient(x, 2*n) for n in (0..m)] # G. C. Greubel, May 14 2019

CROSSREFS

Cf. A001472, A261317, A261381.

Bisection of column k=4 of A261430.

Sequence in context: A231646 A110698 A012485 * A261428 A122569 A309652

Adjacent sequences: A052500 A052501 A052502 * A052504 A052505 A052506

KEYWORD

easy,nonn

AUTHOR

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 08:16 EST 2022. Contains 358691 sequences. (Running on oeis4.)