login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261428
Number of permutations p of [2n] without fixed points such that p^8 = Id.
3
1, 1, 9, 105, 7665, 303345, 25893945, 1765268505, 345763843425, 42813526781025, 9399638261838825, 1573582072888650825, 563295733721953657425, 139523356060051359020625, 55722660999371761475705625, 17053184982967015188566885625, 9496879931794641573011009810625
OFFSET
0,3
LINKS
FORMULA
a(n) = (2n)! * [x^(2n)] exp(x^2/2+x^4/4+x^8/8).
MAPLE
b:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
add(mul(n-i, i=1..j-1)*b(n-j), j=[2, 4, 8])))
end:
a:= n-> b(2*n):
seq(a(n), n=0..20);
CROSSREFS
Bisection of column k=8 of A261430.
Cf. A053498.
Sequence in context: A110698 A012485 A052503 * A122569 A309652 A357295
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 18 2015
STATUS
approved