login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations p of [2n] without fixed points such that p^8 = Id.
3

%I #5 Aug 18 2015 09:03:47

%S 1,1,9,105,7665,303345,25893945,1765268505,345763843425,

%T 42813526781025,9399638261838825,1573582072888650825,

%U 563295733721953657425,139523356060051359020625,55722660999371761475705625,17053184982967015188566885625,9496879931794641573011009810625

%N Number of permutations p of [2n] without fixed points such that p^8 = Id.

%H Alois P. Heinz, <a href="/A261428/b261428.txt">Table of n, a(n) for n = 0..250</a>

%F a(n) = (2n)! * [x^(2n)] exp(x^2/2+x^4/4+x^8/8).

%p b:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,

%p add(mul(n-i, i=1..j-1)*b(n-j), j=[2,4,8])))

%p end:

%p a:= n-> b(2*n):

%p seq(a(n), n=0..20);

%Y Bisection of column k=8 of A261430.

%Y Cf. A053498.

%K nonn

%O 0,3

%A _Alois P. Heinz_, Aug 18 2015