login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001472 Number of degree-n permutations of order dividing 4.
(Formerly M1292 N0495)
39
1, 1, 2, 4, 16, 56, 256, 1072, 6224, 33616, 218656, 1326656, 9893632, 70186624, 574017536, 4454046976, 40073925376, 347165733632, 3370414011904, 31426411211776, 328454079574016, 3331595921852416, 37125035407900672, 400800185285464064 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.

LINKS

T. D. Noe, Table of n, a(n) for n=0..200

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 25

Vladimir Victorovich Kruchinin, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.

L. Moser and M. Wyman, On solutions of x^d = 1 in symmetric groups, Canad. J. Math., 7 (1955), 159-168.

FORMULA

E.g.f.: exp(x + x^2/2 + x^4/4).

a(0)=1, a(1)=1, a(2)=2, a(3)=4, a(n) = a(n-1) + (n-1)*a(n-2) + (n^3-6*n^2+11*n-6)*a(n-4) for n>3. - H. Palsdottir (hronn07(AT)ru.is), Sep 19 2008

a(n) = n!*Sum_{k=1..n} (1/k!)*(Sum_{j=floor((4*k-n)/3)..k} binomial(k,j) * binomial(j,n-4*k+3*j) * (1/2)^(n-4*k+3*j)*(1/4)^(k-j), n>0. - Vladimir Kruchinin, Sep 07 2010

a(n) ~ n^(3*n/4)*exp(n^(1/4)-3*n/4+sqrt(n)/2-1/8)/2 * (1 - 1/(4*n^(1/4)) + 17/(96*sqrt(n)) + 47/(128*n^(3/4))). - Vaclav Kotesovec, Aug 09 2013

MATHEMATICA

n = 23; CoefficientList[Series[Exp[x+x^2/2+x^4/4], {x, 0, n}], x] * Table[k!, {k, 0, n}] (* Jean-François Alcover, May 18 2011 *)

PROG

(Maxima) a(n):=n!*sum(sum(binomial(k, j)*binomial(j, n-4*k+3*j)*(1/2)^(n-4*k+3*j)*(1/4)^(k-j), j, floor((4*k-n)/3), k)/k!, k, 1, n); /* Vladimir Kruchinin, Sep 07 2010 */

(PARI) N=33;  x='x+O('x^N); egf=exp(x+x^2/2+x^4/4); Vec(serlaplace(egf)) /* Joerg Arndt, Sep 15 2012 */

(MAGMA) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^2/2 +x^4/4) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 14 2019

(Sage) m = 30; T = taylor(exp(x + x^2/2 + x^4/4), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 14 2019

CROSSREFS

Cf. A000085, A001470, A053495.

Column k=4 of A008307.

Sequence in context: A262164 A322940 A306519 * A053498 A005388 A053503

Adjacent sequences:  A001469 A001470 A001471 * A001473 A001474 A001475

KEYWORD

nonn,nice,easy

AUTHOR

N. J. A. Sloane and J. H. Conway

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 19 09:35 EST 2020. Contains 331048 sequences. (Running on oeis4.)