The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A052502 Number of permutations sigma of [3n] without fixed points such that sigma^3 = Id. 17
 1, 2, 40, 2240, 246400, 44844800, 12197785600, 4635158528000, 2345390215168000, 1524503639859200000, 1237896955565670400000, 1227993779921145036800000, 1461312598106162593792000000, 2054605512937264606871552000000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS For n >= 1 a(n) is the size of the conjugacy class in the symmetric group S_(3n) consisting of permutations whose cycle decomposition is a product of n disjoint 3-cycles. LINKS G. C. Greubel, Table of n, a(n) for n = 0..210 INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 27 FORMULA From Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 21 2001: (Start) a(n) = (3*n)!/(3^n * n!). a(n) ~ sqrt(3) * 9^n * (n/e)^(2n). (End) E.g.f.: (every third coefficient of) exp(x^3/3). G.f.: hypergeometric3F0([1/3, 2/3, 1], [], 9*x). D-finite with recurrence a(n) = (3*n-1)*(3*n-2)*a(n-1) for n >= 1, with a(0) = 1. Write the generating function for this sequence in the form A(x) = sum {n >= 0} a(n)* x^(2*n+1)/(2*n+1)!. The g.f. A(x) satisfies A'(x)*( 1 - A(x)^2) = 1. Robert Israel remarks that consequently A(x) is a root of z^3 - 3*z + 3*x with A(0) = 0. Cf. A001147, A052504 and A060706. - Peter Bala, Jan 02 2015 MAPLE spec := [S, {S=Set(Union(Cycle(Z, card=3)))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20); MATHEMATICA Table[(3*n)!/(3^n*n!), {n, 0, 20}] (* G. C. Greubel, May 14 2019 *) PROG (PARI) {a(n) = (3*n)!/(3^n*n!)}; \\ G. C. Greubel, May 14 2019 (Magma) [Factorial(3*n)/(3^n*Factorial(n)): n in [0..20]]; // G. C. Greubel, May 14 2019 (Sage) [factorial(3*n)/(3^n*factorial(n)) for n in (0..20)] # G. C. Greubel, May 14 2019 (GAP) List([0..20], n-> Factorial(3*n)/(3^n*Factorial(n))) # G. C. Greubel, May 14 2019 CROSSREFS Cf. A000142. Row sums of triangle A060063. First column of array A091752 (also negative of second column). Equals row sums of A157702. - Johannes W. Meijer, Mar 07 2009 Karol A. Penson suggested that the row sums of A060063 coincide with this entry. Cf. A001147, A052504, A060706, A261317, A261381. Trisection of column k=3 of A261430. Sequence in context: A000816 A000819 A060079 * A209289 A246742 A293950 Adjacent sequences: A052499 A052500 A052501 * A052503 A052504 A052505 KEYWORD easy,nonn AUTHOR encyclopedia(AT)pommard.inria.fr, Jan 25 2000 EXTENSIONS Edited by Wolfdieter Lang, Feb 13 2004 Title improved by Geoffrey Critzer, Aug 14 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 18:27 EST 2022. Contains 358510 sequences. (Running on oeis4.)