login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052502
Number of permutations sigma of [3n] without fixed points such that sigma^3 = Id.
20
1, 2, 40, 2240, 246400, 44844800, 12197785600, 4635158528000, 2345390215168000, 1524503639859200000, 1237896955565670400000, 1227993779921145036800000, 1461312598106162593792000000, 2054605512937264606871552000000
OFFSET
0,2
COMMENTS
For n >= 1 a(n) is the size of the conjugacy class in the symmetric group S_(3n) consisting of permutations whose cycle decomposition is a product of n disjoint 3-cycles.
REFERENCES
F. W. J. Olver, Asymptotics and special functions, Academic Press, 1974, pages 336-344.
LINKS
F. W. J. Olver et al., NIST Digital Library of Mathematical Functions, eq. 9.10.17.
FORMULA
From Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 21 2001: (Start)
a(n) = (3*n)!/(3^n * n!).
a(n) ~ sqrt(3) * 9^n * (n/e)^(2n). (End)
E.g.f.: (every third coefficient of) exp(x^3/3).
G.f.: hypergeometric3F0([1/3, 2/3, 1], [], 9*x).
D-finite with recurrence a(n) = (3*n-1)*(3*n-2)*a(n-1) for n >= 1, with a(0) = 1.
Write the generating function for this sequence in the form A(x) = Sum_{n >= 0} a(n)* x^(2*n+1)/(2*n+1)!. The g.f. A(x) satisfies A'(x)*( 1 - A(x)^2) = 1. Robert Israel remarks that consequently A(x) is a root of z^3 - 3*z + 3*x with A(0) = 0. Cf. A001147, A052504 and A060706. - Peter Bala, Jan 02 2015
From Peter Bala, Feb 27 2024: (Start)
u(n) := a(n+1) satisfies the second-order recurrence u(n) = 18*n*u(n-1) + (3*n - 1)^2*(3*n - 2)^2*u(n-2) with u(0) = 2 and u(1) = 40.
A second solution to the recurrence is given by v(n) := u(n)*Sum_{k = 0..n} (-1)^k/((3*k + 1)*(3*k + 2)) with v(0) = 1 and v(1) = 18.
This leads to the continued fraction expansion (2/3)*log(2) = Sum_{k = 0..n} (-1)^k/((3*k + 1)*(3*k + 2)) = Limit_{n -> oo} v(n)/u(n) = 1/(2 + (1*2)^2/(18 + (4*5)^2/(2*18 + (7*8)^2/(3*18 + (10*11)^2/(4*18 + ... ))))). (End)
From Gabriel B. Apolinario, Jul 30 2024: (Start)
a(n) = 3 * Integral_{t=0..oo} Ai(t)*t^(3*n) dt, where Ai(t) is the Airy function.
a(n) = Integral_{t=-oo..oo} Ai(t)*t^(3*n) dt. (End)
MAPLE
spec := [S, {S=Set(Union(Cycle(Z, card=3)))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
Table[(3*n)!/(3^n*n!), {n, 0, 20}] (* G. C. Greubel, May 14 2019 *)
PROG
(PARI) {a(n) = (3*n)!/(3^n*n!)}; \\ G. C. Greubel, May 14 2019
(Magma) [Factorial(3*n)/(3^n*Factorial(n)): n in [0..20]]; // G. C. Greubel, May 14 2019
(Sage) [factorial(3*n)/(3^n*factorial(n)) for n in (0..20)] # G. C. Greubel, May 14 2019
(GAP) List([0..20], n-> Factorial(3*n)/(3^n*Factorial(n))) # G. C. Greubel, May 14 2019
CROSSREFS
Cf. A000142. Row sums of triangle A060063.
First column of array A091752 (also negative of second column).
Equals row sums of A157702. - Johannes W. Meijer, Mar 07 2009
Karol A. Penson suggested that the row sums of A060063 coincide with this entry.
Trisection of column k=3 of A261430.
Sequence in context: A000816 A000819 A060079 * A209289 A246742 A293950
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
Edited by Wolfdieter Lang, Feb 13 2004
Title improved by Geoffrey Critzer, Aug 14 2015
STATUS
approved