login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A157702 G.f.s of the z^p coefficients of the polynomials in the GF1 denominators of A156921. 7
1, 1, 1, 7, 26, 7, 3, 166, 951, 951, 166, 3, 263, 8999, 59637, 108602, 59637, 8999, 263, 174, 33124, 848555, 6062651, 15477896, 15477896, 6062651, 848555, 33124, 174, 45, 66963, 5856626, 122966782, 920090513 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
The formula for the PDGF1(z;n) polynomials in the GF1 denominators of A156921 can be found below.
The general structure of the GFKT1(z;p) that generate the z^p coefficients of the PDGF1(z; n) polynomials can also be found below. The KT1(z;p) polynomials in the numerators of the GFKT1(z;p) have a nice symmetrical structure.
The sequence of the number of terms of the first few KT1(z;p) polynomials is: 1, 2, 3, 6, 7, 10, 13, 14, 17, 20, 23, 24, 27, 30, 33, 36, 37, 40. The first differences follow a simple pattern. The positions of the 1's follow the Lazy Caterer's sequence A000124.
A Maple algorithm that generates relevant GFKT1(z;p) information can be found below.
LINKS
FORMULA
PDGF1(z;n) = Product_{m=1..n} (1-(2*m-1)*z)^(n+1-m) with n = 1, 2, 3, ... .
GFKT1(z;p) = (-1)^(p)*(z^q1)*KT1(z, p)/(1-z)^(3*p+1) with p = 0, 1, 2, ... .
The recurrence relation for the z^p coefficients a(n) is a(n) = Sum_{k=1..3*p+1} (-1)^(k+1)*binomial(3*p + 1, k)*a(n-k) with p = 0, 1, 2, ... .
EXAMPLE
Some PDGF1 (z;n) are:
PDGF1(z;n=3) = (1-5*z)*(1-3*z)^2*(1-z)^3
PDGF1(z;n=4) = ((1-7*z)*(1-5*z)^2*(1-3*z)^3*(1-z)^4)
The first few GFKT1's are:
GFKT1(z;p=0) = 1/(1-z)
GFKT1(z;p=1) = -z*(1+z)/(1-z)^4
GFKT1(z;p=2) = z^2*(7+26*z+7*z^2)/(1-z)^7
Some KT1(z;p) polynomials are:
KT1(z;p=2) = 7+26*z+7*z^2
KT1(z;p=3) = 3+166*z+951*z^2+951*z^3+166*z^4+3*z^5
KT1(z;p=4) = 263+8999*z+59637*z^2+108602*z^3+59637*z^4+8999*z^5+263*z^6
MAPLE
p:=2; fn:=sum((-1)^(n1+1)*binomial(3*p+1, n1) *a(n-n1), n1=1..3*p+1): fk:=rsolve(a(n) = fn, a(k)): for n2 from 0 to 3*p+1 do fz(n2):=product((1-(2*m-1)*z)^(n2+1-m), m=1..n2); a(n2):= coeff(fz(n2), z, p); end do: b:=n-> a(n): seq(b(n), n=0..3*p+1); a(n)=fn; a(k)=sort(simplify(fk)); GFKT1(p):=(sum(fk*z^k, k=0..infinity)); q1:=ldegree((numer(GFKT1(p)))): KT1(p):=sort((-1)^p*simplify((GFKT1(p))*(1-z)^(3*p+1)/z^q1), z, ascending);
CROSSREFS
Originator sequence A156921.
See A000330 for the z^1 coefficients and A157706 for the z^2 coefficients.
Row sums equal A052502.
Sequence in context: A335498 A012490 A354478 * A063453 A284054 A284786
KEYWORD
easy,nonn,tabf,uned
AUTHOR
Johannes W. Meijer, Mar 07 2009
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 25 09:23 EDT 2024. Contains 371967 sequences. (Running on oeis4.)