The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A157701 Decimal expansion of 2*(14*sigma+5)/625 where sigma = sqrt(5)*log(golden ratio). 0
 0, 6, 4, 2, 0, 5, 8, 0, 1, 3, 8, 7, 9, 6, 8, 4, 5, 2, 3, 5, 5, 6, 1, 6, 5, 2, 2, 0, 9, 0, 4, 6, 7, 8, 0, 7, 6, 4, 7, 5, 5, 1, 9, 1, 6, 4, 4, 4, 5, 1, 2, 4, 4, 1, 3, 3, 2, 7, 8, 4, 6, 8, 3, 6, 4, 7, 1, 6, 6, 8, 5, 6, 1, 3, 1, 6, 4, 6, 7, 7, 9, 6, 7, 2, 4, 8, 6, 9, 0, 9, 6, 4, 6, 0, 8, 8, 6, 3, 5, 0, 0, 5, 5, 0, 9 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The factor 28 in the Lehmer paper has been corrected to 14. Equals sum_{n=1..infinity} (-1)^n*n^3/binomial(2n,n). LINKS D. H. Lehmer, Interesting series involving the Central Binomial Coefficient, Am. Math. Monthly 92, no 7 (1985) 449-457. R. J. Mathar, Corrigenda to "Interesting series involving...", arXiv:0905.0215 FORMULA Equals 2*(14*A002163*A002390+5)/625 . EXAMPLE 0.064205801387968452355.. MAPLE 2/625*(14*sqrt(5)*log((1+sqrt(5))/2)+5) ; MATHEMATICA Join[{0}, RealDigits[2*(14*Sqrt[5]*Log[GoldenRatio]+5)/625, 10, 120][[1]]] (* Harvey P. Dale, Mar 13 2015 *) PROG (PARI) 2*(14*sqrt(5)*log((sqrt(5)+1)/2)+5)/625 \\ Charles R Greathouse IV, May 15 2019 CROSSREFS Cf. A145434, A145433. Sequence in context: A117254 A211022 A021613 * A193076 A073449 A134300 Adjacent sequences:  A157698 A157699 A157700 * A157702 A157703 A157704 KEYWORD cons,easy,nonn AUTHOR R. J. Mathar, Mar 04 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 16 14:39 EDT 2021. Contains 343949 sequences. (Running on oeis4.)