login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000816
E.g.f.: Sum_{n >= 0} a(n) * x^(2*n) / (2*n)! = sin(x)^2 / cos(2*x).
8
0, 2, 40, 1952, 177280, 25866752, 5535262720, 1633165156352, 635421069967360, 315212388819402752, 194181169538675507200, 145435130631317935357952, 130145345400688287667978240, 137139396592145493713802493952
OFFSET
0,2
LINKS
FORMULA
(1/2) * A002436(n), n > 0. - Ralf Stephan, Mar 09 2004
a(n) = 2^(2*n - 1) * A000364(n) except at n=0.
E.g.f.: sin(x)^2/cos(2x) = 1/Q(0) - 1/2; Q(k) = 1 + 1/(1-2*(x^2)/(2*(x^2)-(k+1)*(2k+1)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 18 2011
a(n) = A000819(n) unless n=0.
G.f.: (1/(G(0))-1)/2 where G(k) = 1 - 4*x*(k+1)^2/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Jan 12 2013
G.f.: T(0)/2 - 1/2, where T(k) = 1 - 4*x*(k+1)^2/( 4*x*(k+1)^2 - 1/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 25 2013
E.g.f.: sin(x)^2/cos(2*x) = x^2/(1-2*x^2)*T(0), where T(k) = 1 - x^2*(2*k+1)*(2*k+2)/( x^2*(2*k+1)*(2*k+2) + ((k+1)*(2*k+1) - 2*x^2)*((k+2)*(2*k+3) - 2*x^2)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 25 2013
From Artur Jasinski, Mar 21 2022: (Start)
For n > 0:
a(n) = Pi^(2*n-1)*(-Psi(2*n,1/4) - (4^n)*(2^(2*n+1)-1)*Gamma(2*n+1)*Zeta(2*n+1)).
a(n) = (-1)^(n+1)*2^(2*n)*i*Li_(2*n,i) where i=sqrt(-1) and Li is polylogarithm function.
a(n) = (-64)^n*(zeta(-2*n,1/4)-zeta(-2*n,3/4)) where zeta is Hurwitz zeta function.
a(n) = (-16)^n*lerchphi(-1,-2*n,1/2). (End)
MATHEMATICA
Union[ Range[0, 26]! CoefficientList[ Series[ Sin[x]^2/Cos[ 2x], {x, 0, 26}], x]] (* Robert G. Wilson v, Apr 16 2011 *)
Table[(-1)^(n + 1) 2^(2 n) I PolyLog[-2 n, I], {n, 1, 13}] (* Artur Jasinski, Mar 21 2022 *)
With[{nn=30}, Take[CoefficientList[Series[Sin[x]^2/Cos[2x], {x, 0, nn}], x] Range[0, nn]!, {1, -1, 2}]] (* Harvey P. Dale, Oct 18 2024 *)
PROG
(PARI) {a(n) = local(m); if( n<0, 0, m = 2*n; m! * polcoeff( 1 / (2 - 1 / cos(x + x * O(x^m))^2) - 1, m))} /* Michael Somos, Apr 16 2011 */
(Sage)
@CachedFunction
def sp(n, x) :
if n == 0 : return 1
return -add(2^(n-k)*sp(k, 1/2)*binomial(n, k) for k in range(n)[::2])
def A000816(n) : return 0 if n == 0 else abs(sp(2*n, x)/2)
[A000816(n) for n in (0..13)] # Peter Luschny, Jul 30 2012
KEYWORD
nonn
STATUS
approved