login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f.: Sum_{n >= 0} a(n) * x^(2*n) / (2*n)! = sin(x)^2 / cos(2*x).
8

%I #62 Oct 18 2024 15:26:08

%S 0,2,40,1952,177280,25866752,5535262720,1633165156352,635421069967360,

%T 315212388819402752,194181169538675507200,145435130631317935357952,

%U 130145345400688287667978240,137139396592145493713802493952

%N E.g.f.: Sum_{n >= 0} a(n) * x^(2*n) / (2*n)! = sin(x)^2 / cos(2*x).

%H R. J. Mathar, <a href="/A000816/b000816.txt">Table of n, a(n) for n = 0..200</a>

%F (1/2) * A002436(n), n > 0. - _Ralf Stephan_, Mar 09 2004

%F a(n) = 2^(2*n - 1) * A000364(n) except at n=0.

%F E.g.f.: sin(x)^2/cos(2x) = 1/Q(0) - 1/2; Q(k) = 1 + 1/(1-2*(x^2)/(2*(x^2)-(k+1)*(2k+1)/Q(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, Nov 18 2011

%F a(n) = A000819(n) unless n=0.

%F G.f.: (1/(G(0))-1)/2 where G(k) = 1 - 4*x*(k+1)^2/G(k+1); (continued fraction). - _Sergei N. Gladkovskii_, Jan 12 2013

%F G.f.: T(0)/2 - 1/2, where T(k) = 1 - 4*x*(k+1)^2/( 4*x*(k+1)^2 - 1/T(k+1) ); (continued fraction). - _Sergei N. Gladkovskii_, Oct 25 2013

%F E.g.f.: sin(x)^2/cos(2*x) = x^2/(1-2*x^2)*T(0), where T(k) = 1 - x^2*(2*k+1)*(2*k+2)/( x^2*(2*k+1)*(2*k+2) + ((k+1)*(2*k+1) - 2*x^2)*((k+2)*(2*k+3) - 2*x^2)/T(k+1) ); (continued fraction). - _Sergei N. Gladkovskii_, Oct 25 2013

%F From _Artur Jasinski_, Mar 21 2022: (Start)

%F For n > 0:

%F a(n) = Pi^(2*n-1)*(-Psi(2*n,1/4) - (4^n)*(2^(2*n+1)-1)*Gamma(2*n+1)*Zeta(2*n+1)).

%F a(n) = (-1)^(n+1)*2^(2*n)*i*Li_(2*n,i) where i=sqrt(-1) and Li is polylogarithm function.

%F a(n) = (-64)^n*(zeta(-2*n,1/4)-zeta(-2*n,3/4)) where zeta is Hurwitz zeta function.

%F a(n) = (-16)^n*lerchphi(-1,-2*n,1/2). (End)

%t Union[ Range[0, 26]! CoefficientList[ Series[ Sin[x]^2/Cos[ 2x], {x, 0, 26}], x]] (* _Robert G. Wilson v_, Apr 16 2011 *)

%t Table[(-1)^(n + 1) 2^(2 n) I PolyLog[-2 n, I], {n, 1, 13}] (* _Artur Jasinski_, Mar 21 2022 *)

%t With[{nn=30},Take[CoefficientList[Series[Sin[x]^2/Cos[2x],{x,0,nn}],x] Range[0,nn]!,{1,-1,2}]] (* _Harvey P. Dale_, Oct 18 2024 *)

%o (PARI) {a(n) = local(m); if( n<0, 0, m = 2*n; m! * polcoeff( 1 / (2 - 1 / cos(x + x * O(x^m))^2) - 1, m))} /* _Michael Somos_, Apr 16 2011 */

%o (Sage)

%o @CachedFunction

%o def sp(n,x) :

%o if n == 0 : return 1

%o return -add(2^(n-k)*sp(k,1/2)*binomial(n,k) for k in range(n)[::2])

%o def A000816(n) : return 0 if n == 0 else abs(sp(2*n,x)/2)

%o [A000816(n) for n in (0..13)] # _Peter Luschny_, Jul 30 2012

%Y Cf. A000364, A000819, A000822, A000828, A003707, A009125, A009569.

%K nonn

%O 0,2

%A _N. J. A. Sloane_