login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000828
E.g.f. cos(x)/(cos(x) - sin(x)).
22
1, 1, 2, 8, 40, 256, 1952, 17408, 177280, 2031616, 25866752, 362283008, 5535262720, 91620376576, 1633165156352, 31191159799808, 635421069967360, 13753735117275136, 315212388819402752, 7625476699018231808
OFFSET
0,3
COMMENTS
For a refinement of these numbers see A185896.
A signed permutation is a sequence (x_1,x_2,...,x_n) of integers such that {|x_1|,|x_2|,...|x_n|} = {1,2...,n}. Let x_1,...,x_n be a signed permutation. Then we say 0,x_1,...,x_n,0 is a snake of type S(n;0,0) when 0 < x_1 > x_2 < ... 0. For example, 0 4 -3 -1 -2 0 is a snake of type S(4;0,0). Then a(n) equals the cardinality of S(n;0,0) [Verges]. An example is given below. - Peter Bala, Sep 02 2011
Original name was: E.g.f. cos(x)*(cos(x)+sin(x)) /cos(2*x). - Arkadiusz Wesolowski, Jul 25 2012
Number of plane (that is, ordered) increasing 0-1-2 trees on n vertices where the vertices of outdegree 1 or 2 come in two colors. An example is given below. - Peter Bala, Oct 10 2012
LINKS
Paul Barry, Series reversion with Jacobi and Thron continued fractions, arXiv:2107.14278 [math.NT], 2021.
F. Bergeron, Ph. Flajolet and B. Salvy, Varieties of Increasing Trees, Lecture Notes in Computer Science vol. 581, ed. J.-C. Raoult, Springer 1992, pp. 24-48.
Wiktor Ejsmont and Franz Lehner, The Free Tangent Law, arXiv:2004.02679 [math.OA], 2020.
M. Josuat-Verges, Enumeration of snakes and cycle-alternating permutations, arXiv:1011.0929 [math.CO], 2010.
Vladimir Kruchinin, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.
FORMULA
E.g.f.: 1/(1- tan(x)). - Emeric Deutsch, Sep 10 2001
a(n) = A000831(n)/2 for n>0. - Peter Luschny, Nov 25 2010
a(n) = sum(evenp(n+k), k=1..n, (-1)^((n+k)/2)*sum(j=k..n, j!/n!*stirling2(n,j)*2^(n-j)*(-1)^(n+j-k)*binomial(j-1,k-1)), n>0. - Vladimir Kruchinin, Aug 18 2010
a(n) = (-1)^((n^2-n)/2)*4^n*(E_{n}(1/2)+E_{n}(1))/2 for n >= 0, where E_{n}(x) is an Euler polynomial. - Peter Luschny, Nov 25 2010
From Peter Bala, Sep 02 2011: (Start)
a(n) = (2*i)^(n-1)*Sum_{k = 1..n} (-1)^(n-k)*k!* Stirling2(n,k) * ((1-i)/2)^(k-1), where i = sqrt(-1).
a(n) = 2^(n-1)*A000111(n) for n >= 1.
Let f(x) = 1+x^2 and define the effect of the operator D on a function g(x) by D(g(x)) = d/dx(f(x)*g(x)). Then for n >= 0, a(n+1) = D^n(1) evaluated at x = 1. (End)
From Sergei N. Gladkovskii, Dec 09 2011 - Dec 23 2013: (Start) Continued fractions:
E.g.f.: 1 + x/(G(0)-x); G(k) = 2*k + 1 - (x^2)/G(k+1).
E.g.f.: 1 + x/(U(0)-2*x) where U(k) = 4*k+1 + x/(1+x/(4*k+3 - x/(1- x/U(k+1)))).
E.g.f.: 1 + x/(U(0)-x) where U(k) = 2*k+1 - x^2/U(k+1).
G.f.: 1 + x/G(0) where G(k) = 1 - x*(2*k+2) - 2*x^2*(k+1)*(k+2)/G(k+1).
E.g.f.: 1 + x/T(0) where T(k) = 4*k+1 - x/(1 - x/(4*k+3 + x/(1 + x/T(k+1)))).
G.f.: 1 + x/Q(0) where Q(k) = 1 - 2*x*(2*k+1) - 2*x^2*(2*k+1)*(2*k+2)/(1 - 2*x*(2*k+2) - 2*x^2*(2*k+2)*(2*k+3)/Q(k+1)).
G.f.: 1 + x/(1-2*x)*T(0) where T(k) = 1 - 2*x^2*(k+1)*(k+2)/( 2*x^2*(k+1)*(k+2) - (1 - 2*x*(k+1))*(1 - 2*x*(k+2))/T(k+1)).
E.g.f.: T(0) where T(k) = 1 + x/(4*k+1 - x/(1 - x/( 4*k+3 + x/T(k+1)))). (End)
G.f.: 1 /(1 - 1*x /(1 - 1*x /(1 - 4*x /(1 - 2*6*x^2 /(1 - 6*x /(1 - 4*x /(1 - 4*x /(1 - 10*x /(1 - 5*12*x^2 /(1 - 12*x / ...)))))))))). - Michael Somos, May 12 2012
a(n) ~ n! * 2^(2*n+1)/Pi^(n+1). - Vaclav Kotesovec, Jun 21 2013
a(0) = a(1) = 1; a(n) = 2 * Sum_{k=1..n-1} binomial(n-1,k) * a(k) * a(n-k-1). - Ilya Gutkovskiy, Nov 21 2020
From Peter Bala, Dec 04 2021: (Start)
F(x) = exp(2*x)*(exp(2*x) - 1)/(exp(4*x) + 1) = x + 2*x^2/2! - 8*x^3/3! - 40*x^4/4! + 256*x^5/5! + 1952*x^6/6! - - + + ... is the e.g.f. for the sequence [1, 2, -8, -40, 256, 1952, ...], a signed version of this sequence without the first term.
Let G(x) = x + 2*x^2 - 8*x^3 - 40*x^4 + 256*x^5 + 1952*x^6 - - + + ... be the corresponding o.g.f. We have the continued fraction representation G(x) = x/(1 - 2*x + 12*x^2/(1 + 20*x^2/(1 - 2*x + 56*x^2/(1 + 72*x^2/(1 - 2*x + ... + 4*n*(4*n-1)*x^2/(1 + 4*n*(4*n+1)*x^2/(1 - 2*x + ... ))))))).
The inverse binomial transform 1/(1 + x)*G(x/(1 + x)) = x - 11*x^3 + 361*x^5 - 24611*x^7 + - ... is a g.f. for a signed and aerated version of A000464. (End)
EXAMPLE
a(3) = 8: The eight snakes of type S(3;0,0) are
0 1 -2 3 0, 0 1 -3 2 0, 0 2 1 3 0, 0 2 -1 3 0, 0 2 -3 1 0,
0 3 1 2 0, 0 3 -1 2 0, 0 3 -2 1 0.
1 + x + 2*x^2 + 8*x^3 + 40*x^4 + 256*x^5 + 1952*x^6 + 17408*x^7 + ...
a(3) = 8: The eight increasing 0-1-2 trees on 3 vertices are
..1o (x2 colors)......1o (x2 colors)......1o (x2 colors).....
...|................./.\................./.\.................
..2o (x2 colors)...2o...o3.............3o...o2...............
...|
..3o
Totals.......................................................
...4......+...........2.........+.........2....=...8.........
MAPLE
A000828 := n -> (-1)^((n-1)*n/2)*4^n*(Euler(n, 1/2)+Euler(n, 1))/2: # Peter Luschny, Nov 25 2010
MATHEMATICA
a[n_] := (-1)^((n-1)*n/2)*4^n*(EulerE[n, 1/2] + EulerE[n, 1])/2; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Nov 22 2012, after Peter Luschny *)
PROG
(Maxima) a(n):=sum(if evenp(n+k) then (-1)^((n+k)/2)*sum(j!/n!*stirling2(n, j)*2^(n-j)*(-1)^(n+j-k)*binomial(j-1, k-1), j, k, n), k, 1, n); /* Vladimir Kruchinin, Aug 18 2010 */
(PARI) my(x='x + O('x^30)); Vec(serlaplace(cos(x)/(cos(x)-sin(x)))) \\ Michel Marcus, Nov 21 2020
CROSSREFS
KEYWORD
nonn,easy
EXTENSIONS
Name changed by Arkadiusz Wesolowski, Jul 25 2012
STATUS
approved