login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000831
Expansion of e.g.f. (1 + tan(x))/(1 - tan(x)).
22
1, 2, 4, 16, 80, 512, 3904, 34816, 354560, 4063232, 51733504, 724566016, 11070525440, 183240753152, 3266330312704, 62382319599616, 1270842139934720, 27507470234550272, 630424777638805504, 15250953398036463616, 388362339077351014400, 10384044045105304174592
OFFSET
0,2
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..432 (first 84 terms from R. J. Mathar)
William Y. C. Chen and Amy M. Fu, The Dumont Ansatz for the Eulerian Polynomials, Peak Polynomials and Derivative Polynomials, arXiv:2204.01497 [math.CO], 2022.
M. S. Tokmachev, Correlations Between Elements and Sequences in a Numerical Prism, Bulletin of the South Ural State University, Ser. Mathematics. Mechanics. Physics, 2019, Vol. 11, No. 1, 24-33.
FORMULA
E.g.f.: tan(x+Pi/4).
a(n) = Sum_{k=1..n} (if even(n+k) ( (-1)^((n+k)/2)*Sum_{j=k..n} (j!*stirling2(n,j)*2^(n-j+1)*(-1)^(j)*binomial(j-1,k-1) ), n>0. - Vladimir Kruchinin, Aug 19 2010
a(n) = 4^n*(E_{n}(1/2) + E_{n}(1))*(-1)^((n^2-n)/2) for n > 0, where E_{n}(x) is an Euler polynomial. - Peter Luschny, Nov 24 2010
a(n) = 2^n * A000111(n). - Gerard P. Michon, Feb 24 2011
From Sergei N. Gladkovskii, Dec 01 2011 - Jan 24 2014: (Start)
Continued fractions:
E.g.f.: -1 + 2/(1-x*G(0)); G(k) = 1 - (x^2)/((x^2) - (2*k + 1)*(2*k + 3)/G(k+1)).
E.g.f.: 1 + 2*x/(U(0)-2*x) where U(k) = 4*k+1 + x/(1+x/ (4*k+3 - x/(1- x/U(k+1)))).
E.g.f.: 1 + 2*x/(G(0)-x) where G(k) = 2*k+1 - x^2/G(k+1).
G.f.: 1 + 2*x/Q(0), where Q(k) = 1 - 2*x*(2*k+1) - 2*x^2*(2*k+1)*(2*k+2)/( 1 - 2*x*(2*k+2) - 2*x^2*(2*k+2)*(2*k+3)/Q(k+1)).
E.g.f.: tan(2*x) + sec(2*x) = (x-1)/(x+1) - 2*(2*x^2+3)/( T(0)*3*x*(1+x)- 2*x^2-3)/(x+1), where T(k) = 1 - x^4*(4*k-1)*(4*k+7)/( x^4*(4*k-1)*(4*k+7) - (4*k+1)*(4*k+5)*(16*k^2 + 8*k - 2*x^2 - 3)*(16*k^2 + 40*k - 2*x^2 + 21)/T(k+1)).
E.g.f.: 1 + 2*x/Q(0), where Q(k) = 4*k+1 -x/(1 - x/( 4*k+3 + x/(1 + x/Q(k+1)))).
E.g.f.: tan(2*x) + sec(2*x) = 2*R(0)-1, where R(k) = 1 + x/( 4*k+1 - x/(1 - x/( 4*k+3 + x/R(k+1)))).
G.f.: 1+ G(0)*2*x/(1-2*x), where G(k) = 1 - 2*x^2*(k+1)*(k+2)/(2*x^2*(k+1)*(k+2) - (1-2*x*(k+1))*(1-2*x*(k+2))/G(k+1)). (End)
a(n) ~ n! * (4/Pi)^(n+1). - Vaclav Kotesovec, Jun 15 2015
a(0) = 1; a(n) = 2 * Sum_{k=0..n-1} binomial(n-2,k) * a(k) * a(n-k-1). - Ilya Gutkovskiy, Jun 11 2020
EXAMPLE
(1+tan x)/(1-tan x) = 1 + 2*x/1! + 4*x^2/2! + 16*x^3/3! + 80*x^4/4! + 512*x^5/5! + ...
MAPLE
A000831 := (1+tan(x))/(1-tan(x)) : for n from 0 to 200 do printf("%d %d ", n, n!*coeftayl(A000831, x=0, n)) ; end: # R. J. Mathar, Nov 19 2006
A000831 := n -> `if`(n=0, 1, (-1)^((n^2-n)/2)*4^n*(euler(n, 1/2)+euler( n, 1))): # Peter Luschny, Nov 24 2010
# third Maple program:
b:= proc(u, o) option remember;
`if`(u+o=0, 1, 2*add(b(o-1+j, u-j), j=1..u))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..25); # Alois P. Heinz, Sep 02 2020
MATHEMATICA
Range[0, 18]! CoefficientList[Series[(1+Tan[x])/(1-Tan[x]), {x, 0, 18}], x] (* Robert G. Wilson v, Apr 16 2011 *)
b[u_, o_] := b[u, o] = If[u+o == 0, 1, 2*Sum[b[o-1+j, u-j], {j, 1, u}]];
a[n_] := b[n, 0];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Dec 02 2023, after Alois P. Heinz *)
PROG
(PARI) a(n) = if( n<1, n==0, n! * polcoeff( 1 + 2 / ( 1 / tan( x + x * O(x^n)) - 1), n)) /* Michael Somos, Apr 16 2011 */
(PARI) a(n) = local(A); if( n<0, 0, A = x * O(x^n); n! * polcoeff( (cos(x + A) + sin(x + A)) / (cos(x + A) - sin(x + A)), n)) /* Michael Somos, Apr 16 2011 */
(Maxima) a(n):=sum(if evenp(n+k) then ((-1)^((n+k)/2)*sum(j!*stirling2(n, j)*2^(n-j+1)*(-1)^(j)*binomial(j-1, k-1), j, k, n)) else 0, k, 1, n); /* Vladimir Kruchinin, Aug 19 2010 */
(Sage)
@CachedFunction
def sp(n, x) :
if n == 0 : return 1
return -add(2^(n-k)*sp(k, 1/2)*binomial(n, k) for k in range(n)[::2])
A000831 = lambda n : abs(sp(n, x))
[A000831(n) for n in (0..21)] # Peter Luschny, Jul 30 2012
(SageMath)
def A000831_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( (1+tan(x))/(1-tan(x)) ).egf_to_ogf().list()
A000831_list(40) # G. C. Greubel, Mar 21 2019; Apr 28 2023
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m);
Coefficients(R!(Laplace( (1+Tan(x))/(1-Tan(x)) ))); // G. C. Greubel, Mar 21 2019; Apr 28 2023
CROSSREFS
KEYWORD
nonn
STATUS
approved