The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60, we have over 367,000 sequences, and we’ve crossed 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A213010 G.f. satisfies: A(x) = x+x^2 + x*A(A(x)). 5
 1, 2, 4, 16, 80, 480, 3296, 25152, 209600, 1884160, 18110080, 184898304, 1994964736, 22654449664, 269855506944, 3362350046208, 43715434232832, 591812683833344, 8326660788725760, 121550217508892672, 1838089917983911936, 28753297176215257088, 464675647688625364992 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The half-iteration of the g.f. equals an integer series (A213009). LINKS Paul D. Hanna, Table of n, a(n) for n = 1..256 FORMULA G.f. satisfies: A(x) = x/G(x) - 1 - G(x) where A(G(x)) = x. EXAMPLE G.f.: A(x) = x + 2*x^2 + 4*x^3 + 16*x^4 + 80*x^5 + 480*x^6 + 3296*x^7 +... where A(A(x)) = x + 4*x^2 + 16*x^3 + 80*x^4 + 480*x^5 + 3296*x^6 +... Related expansions. Let B(B(x)) = A(x), then B(x) is an integer series: B(x) = x + x^2 + x^3 + 5*x^4 + 21*x^5 + 125*x^6 + 825*x^7 + 6133*x^8 +... where the coefficients of B(x) are congruent to 1 modulo 4. PROG (PARI) {a(n)=local(A=x+2*x^2); for(i=1, n, A=x+x^2+x*subst(A, x, A+x*O(x^n))); polcoeff(A, n)} for(n=1, 31, print1(a(n), ", ")) CROSSREFS Cf. A213009, A030266, A215114, A215116, A215118. Sequence in context: A025225 A115125 A326859 * A000831 A000090 A295922 Adjacent sequences: A213007 A213008 A213009 * A213011 A213012 A213013 KEYWORD nonn AUTHOR Paul D. Hanna, Jun 01 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 03:27 EST 2023. Contains 367505 sequences. (Running on oeis4.)