login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A000090
Expansion of e.g.f. exp((-x^3)/3)/(1-x).
(Formerly M1295 N0496)
12
1, 1, 2, 4, 16, 80, 520, 3640, 29120, 259840, 2598400, 28582400, 343235200, 4462057600, 62468806400, 936987251200, 14991796019200, 254860532326400, 4587501779660800, 87162533813555200, 1743250676271104000, 36608259566534656000, 805381710463762432000
OFFSET
0,3
COMMENTS
a(n) is the number of permutations in the symmetric group S_n whose cycle decomposition contains no 3-cycle.
REFERENCES
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 85.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 1, 1986, page 93, problem 7.
LINKS
L. W. Shapiro & N. J. A. Sloane, Correspondence, 1976
FORMULA
a(n) = n! * Sum_{i=0..floor(n/3)} (-1)^i / (i! * 3^i); a(n)/n! ~ Sum_{i >= 0} (-1)^i / (i! * 3^i) = e^(-1/3); a(n) ~ e^(-1/3) * n!; a(n) ~ e^(-1/3) * (n/e)^n * sqrt(2 * Pi * n). - Avi Peretz (njk(AT)netvision.net.il), Apr 22 2001
a(n,k) = n!*floor(floor(n/k)!*k^floor(n/k)/exp(1/k) + 1/2)/(floor(n/k)!*k^floor(n/k)), here k=3, n>=0. - Simon Plouffe from old notes, 1993
E.g.f.: E(x) = exp(-x^3/3)/(1-x)=G(0)/((1-x)^2); G(k) = 1 - x/(1 - x^2/(x^2 + 3*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Feb 11 2012
EXAMPLE
a(3) = 4 because the permutations in S_3 that contain no 3-cycles are the trivial permutation and the 3 transpositions.
MAPLE
seq(coeff(convert(series(exp((-x^3)/3)/(1-x), x, 50), polynom), x, i)*i!, i=0..30); # series expansion A000090:=n->n!*add((-1)^i/(i!*3^i), i=0..floor(n/3)); seq(A000090(n), n=0..30); # formula (Pab Ter)
MATHEMATICA
nn=20; Range[0, nn]!CoefficientList[Series[Exp[-x^3/3]/(1-x), {x, 0, nn}], x] (* Geoffrey Critzer, Oct 28 2012 *)
PROG
(PARI) {a(n) = if( n<0, 0, n! * polcoeff( exp( -(x^3 / 3) + x*O(x^n)) / (1 - x), n))} /* Michael Somos, Jul 28 2009 */
CROSSREFS
KEYWORD
nonn,easy
EXTENSIONS
More terms from Pab Ter (pabrlos2(AT)yahoo.com), Oct 22 2005
Entry improved by comments from Michael Somos, Jul 28 2009
STATUS
approved