|
|
A000138
|
|
Expansion of e.g.f. exp(-x^4/4)/(1-x).
(Formerly M1635 N0638)
|
|
9
|
|
|
1, 1, 2, 6, 18, 90, 540, 3780, 31500, 283500, 2835000, 31185000, 372972600, 4848643800, 67881013200, 1018215198000, 16294848570000, 277012425690000, 4986223662420000, 94738249585980000, 1894745192712372000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
a(n) is the number of permutations in the symmetric group S_n whose cycle decomposition contains no 4-cycle.
|
|
REFERENCES
|
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 85.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 1, 1986, page 93, problem 7.
|
|
LINKS
|
|
|
FORMULA
|
a(n) = n! * Sum_{i=0..floor(n/4)} (-1)^i / (i! * 4^i); a(n)/n! ~ Sum_{i >= 0} (-1)^i / (i! * 4^i) = e^(-1/4); a(n) ~ e^(-1/4) * n!; a(n) ~ e^(-1/4) * (n/e)^n * sqrt(2*Pi*n). - Avi Peretz (njk(AT)netvision.net.il), Apr 22 2001
a(n,k) = n!*floor(floor(n/k)!*k^floor(n/k)/exp(1/k) + 1/2)/(floor(n/k)!*k^floor(n/k)), here k=4, n>=0. Simon Plouffe, from old notes, 1993
E.g.f.: exp(-x^4/4)/(1-x) = 1/G(0); G(k) = 1 - x/(1 - (x^3)/(x^3 - 4*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Feb 28 2012
|
|
EXAMPLE
|
a(4) = 18 because in S_4 the permutations with no 4-cycle are the complement of the six 4-cycles so a(4) = 4! - 6 = 18.
|
|
MATHEMATICA
|
nn=20; Range[0, nn]!CoefficientList[Series[Exp[-x^4/4]/(1-x), {x, 0, nn}], x] (* Geoffrey Critzer, Oct 28 2012 *)
|
|
PROG
|
(PARI) {a(n) = if( n<0, 0, n! * polcoeff( exp( -(x^4/4) + x*O(x^n)) / (1 - x), n))} /* Michael Somos, Jul 28 2009 */
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|