The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60, we have over 367,000 sequences, and we’ve crossed 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A000092 Let A(n) = #{(i,j,k): i^2 + j^2 + k^2 <= n}, V(n) = (4/3)Pi*n^(3/2), P(n) = A(n) - V(n); sequence gives values of n where |P(n)| sets a new record. (Formerly M1326 N0508) 9
 1, 2, 5, 6, 14, 21, 29, 30, 54, 90, 134, 155, 174, 230, 234, 251, 270, 342, 374, 461, 494, 550, 666, 750, 810, 990, 1890, 2070, 2486, 2757, 2966, 3150, 3566, 3630, 4554, 4829, 5670, 5750, 8154, 8382, 8774, 8910, 10350, 10710, 15734, 15750, 16302, 17550 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Indices n for which A210641(n) = A117609(n) - A210639(n) yields record values (in absolute value). - M. F. Hasler, Mar 26 2012 REFERENCES N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Seth A. Troisi, Table of n, a(n) for n = 1..131 W. C. Mitchell, The number of lattice points in a k-dimensional hypersphere, Math. Comp., 20 (1966), 300-310. Seth A. Troisi, Python program MATHEMATICA P[n_] := Sum[SquaresR[3, k], {k, 0, n}] - Round[(4/3)*Pi*n^(3/2)]; record = 0; A000092 = Reap[For[n=1, n <= 2*10^4, n++, If[(p = Abs[P[n]]) > record, record = p; Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Feb 04 2016, after M. F. Hasler *) PROG (PARI) m=0; for(n=1, 1e4, if(m+0

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 23:26 EST 2023. Contains 367503 sequences. (Running on oeis4.)