login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A000092
Let A(n) = #{(i,j,k): i^2 + j^2 + k^2 <= n}, V(n) = (4/3)Pi*n^(3/2), P(n) = A(n) - V(n); sequence gives values of n where |P(n)| sets a new record.
(Formerly M1326 N0508)
9
1, 2, 5, 6, 14, 21, 29, 30, 54, 90, 134, 155, 174, 230, 234, 251, 270, 342, 374, 461, 494, 550, 666, 750, 810, 990, 1890, 2070, 2486, 2757, 2966, 3150, 3566, 3630, 4554, 4829, 5670, 5750, 8154, 8382, 8774, 8910, 10350, 10710, 15734, 15750, 16302, 17550
OFFSET
1,2
COMMENTS
Indices n for which A210641(n) = A117609(n) - A210639(n) yields record values (in absolute value). - M. F. Hasler, Mar 26 2012
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
W. C. Mitchell, The number of lattice points in a k-dimensional hypersphere, Math. Comp., 20 (1966), 300-310.
Seth A. Troisi, Python program
MATHEMATICA
P[n_] := Sum[SquaresR[3, k], {k, 0, n}] - Round[(4/3)*Pi*n^(3/2)]; record = 0; A000092 = Reap[For[n=1, n <= 2*10^4, n++, If[(p = Abs[P[n]]) > record, record = p; Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Feb 04 2016, after M. F. Hasler *)
PROG
(PARI) m=0; for(n=1, 1e4, if(m+0<m=max(abs(A210641(n)), m), print1(n", "))) /* Start with n=0 to print the initial 0. */ \\ M. F. Hasler, Mar 26 2012
CROSSREFS
KEYWORD
nonn
EXTENSIONS
Revised Jun 28 2005
STATUS
approved