login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A000036
Let A(n) = #{(i,j): i^2 + j^2 <= n}, V(n) = Pi*n, P(n) = A(n) - V(n); A000099 gives values of n where |P(n)| sets a new record; sequence gives closest integer to P(A000099(n)).
(Formerly M0610 N0221)
7
2, 3, 5, 6, 6, -6, 7, 8, 10, 13, 13, 13, 14, -17, 17, 17, 18, -19, 20, -22, 23, 27, -29, -29, 29, -31, -32, -35, 36, -37, -40, -43, -46, -48, -50, -53, -55, -57, -60, -60, -61, -63, -66, -66, -68, -71, -74, -77, -79, -82, -85, -88, -89, -92, -95, -96, -97, -97, -100
OFFSET
1,1
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
W. C. Mitchell, The number of lattice points in a k-dimensional hypersphere, Math. Comp., 20 (1966), 300-310.
FORMULA
a(n) = round(P(A000099(n))), where P(n) = A057655(n)-pi*n. - David W. Wilson, May 15 2008
MATHEMATICA
nmax = 6*10^4; A[n_] := 1 + 4*Floor[Sqrt[n]] + 4*Floor[Sqrt[n/2]]^2 + 8* Sum[Floor[Sqrt[n - j^2]], {j, Floor[Sqrt[n/2]] + 1, Floor[Sqrt[n]]}]; V[n_] := Pi*n; P[n_] := A[n] - V[n]; record = 0; A000036 = Reap[For[k = 0; n = 1, n <= nmax, n++, p = Abs[pn = P[n]]; If[p > record, record = p; k++; Sow[pn // Round]; Print["a(", k, ") = ", pn // Round]]]][[2, 1]] (* Jean-François Alcover, Feb 03 2016 *)
CROSSREFS
KEYWORD
sign
EXTENSIONS
Revised by N. J. A. Sloane, Jun 26 2005
More terms from David W. Wilson, May 15 2008
STATUS
approved